Supporting Information

Amphiphilic Diblock Copolymers of Poly(glycidol) with Biodegradable Polyester/Polycarbonate. Organocatalytic One-Pot ROP and Self-Assembling Property

Tingyu He,^a Atsushi Narumi,^b Yanqiu Wang,^a Liang Xu,^a Shin-ichiro Sato,^c Xiande

Shen^{*,a,d} and Toyoji Kakuchi^{*,a,c,d}

^a Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China

^b Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

^c Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

^d Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China

Contents

1. Tables for the synthesis and characterizations of PBnGE _x -b-PLAA _y , PBnGE _x -b-PTMC _y , and	
PBnGE _x -b-PCL _y	2
3. ¹ H and ¹³ C NMR spectra of PBnGE _x - <i>b</i> -PLLA _y , PBnGE _x - <i>b</i> -PTMC _y and PBnGE _x - <i>b</i> -PCL _y	7
4. Tables for the synthesis and characterizations of PG _x - <i>b</i> -PLLA _y , PG _x - <i>b</i> -PTMC _y and PG _x - <i>b</i> -PCL _y	.10
5. SEC traces of PG _x -b-PLLA _y , PG _x -b-PTMC _y and PG _x -b-PCL _y	.13
6. ¹ H and ¹³ C NMR spectra of PG ₄₈ - <i>b</i> -PLLA ₄₉ , PG ₄₉ - <i>b</i> -PTMC ₄₉ and PG ₄₉ - <i>b</i> -PCL ₄₉	.15
7. Tables for the hydrodynamic diameters (D_hs) of PG_x - <i>b</i> -PLLA _y , PG_x - <i>b</i> -PTMC _y and PG_x - <i>b</i> -PCL _y	.18

	1st ROP of BnGE ^a			2nd ROP of LLA ^b			Product				
Entry		Time	Conv.		Time	Conv.	Code ^c	$M_{ m n, calcd}{}^d$	$M_{\rm n,NMR}^{} e$	DÍ	
	[M _{1st}]0/[1]0	(h)	(%)	[WI 2nd]0/[I]0	(h)	(%)		(kg mol ⁻¹)	(kg mol ⁻¹)	D^{j}	
1	50	20	>99	50	6	>99	PBnGE49-b-PLLA49	15.6	15.3	1.11	
2	50	20	>99	75	6	>99	PBnGE49-b-PLLA73	19.0	18.7	1.13	
3	50	20	>99	100	6	98.5	PBnGE49-b-PLLA92	22.6	21.5	1.15	
4	50	20	>99	125	6	94.8	PBnGE49-b-PLLA115	25.5	24.8	1.16	
5	50	20	>99	150	6	90.6	PBnGE49-b-PLLA132	28.0	27.2	1.17	
6	75	20	>99	50	6	>99	PBnGE73-b-PLLA49	19.7	19.2	1.14	
7	100	20	>99	50	6	>99	PBnGE98-b-PLLA49	23.8	23.3	1.15	
8	125	24	95.2	50	6	>99	PBnGE115-b-PLLA49	26.9	26.1	1.16	
9	150	28	92.1	50	6	>99	PBnGE132-b-PLLA49	30.2	28.9	1.17	

1. Tables for the synthesis and characterizations of PBnGE_x-b-PLAA_y, PBnGE_x-b-PTMC_y and PBnGE_x-b-PCL_y

Table S1. The 1st ROP of BnGE using *t*-Bu-P₄ and 2nd ROP of LLA using *t*-Bu-P₂ to produce PBnGE_x-*b*-PLLA_y

^{*a*} The polymerizations of BnGE (M_{1st}) were performed using *t*BBA as the initiator (I) and *t*-Bu-P₄ as the catalyst (Cat_{1st}) in THF at room temperature ([M_{1st}]₀, 3 mol L⁻¹; [I]/[Cat_{1st}], 1/0.5). ^{*b*} The polymerizations of LLA (M_{2nd}) were performed using *t*-Bu-P₂ as the catalyst (Cat_{2nd}) after the "organocatalyst switching" procedure using the [Cat_{1st}]₀/[DPP]₀/[Cat_{2nd}]₀ ratio of 1:1.3:2.3. ^{*c*} The number average degree of polymerizations of the PBnGE and PLLA units (*x* and *y*, respectively) were determined by ¹H NMR spectra in CDCl₃. ^{*d*} Calculated from the equation: $M_{n,calcd} = \{([M_{1st}]_0/[I]_0) \times (\text{conv. for the 1st ROP}) \times (MW \text{ of } M_{1st})\} + \{([M_{2nd}]_0/[I]_0) \times (\text{conv. for the 2nd ROP}) \times (MW \text{ of } M_{2nd})]\} + \{(MW \text{ of I})\}$. ^{*e*} Determined by ¹H NMR spectra in CDCl₃.

	1st ROP of BnGE ^a		2nd ROP of TMC b			Product					
Entry	[M.]./[]].	Time	Time Conv.		Time Conv.		Cada ^c	$M_{ m n, calcd}{}^d$	$M_{n,NMR}^{e}$	рſ	D Í
	[1v1]st]0/[1]0	(h)	(%)	[1 v1 2nd]0/[1]0	(h)	(%)	Code	$(kg mol^{-1})$	(kg mol^{-1})	D°	D°
10	50	20	>99	50	6	>99	PBnGE49-b-PTMC49	13.5	13.1	1.09	
11	50	20	>99	75	6	>99	PBnGE49-b-PTMC 73	16.0	15.7	1.12	
12	50	20	>99	100	6	96.6	PBnGE49-b-PTMC95	18.2	17.9	1.15	
13	50	20	>99	125	6	92.8	PBnGE49- <i>b</i> -PTMC114	20.2	19.9	1.17	
14	50	20	>99	150	6	89.4	PBnGE49-b-PTMC130	22.1	21.5	1.18	
15	75	20	>99	50	6	>99	PBnGE74- <i>b</i> - PTMC49	17.6	17.3	1.12	
16	100	20	>99	50	6	>99	PBnGE98-b- PTMC 49	21.7	21.3	1.13	
17	125	24	94.8	50	6	>99	PBnGE ₁₁₄ - <i>b</i> -PTMC ₄₈	24.7	23.8	1.14	
18	150	28	91.1	50	6	>99	PBnGE133-b- PTMC48	27.7	26.9	1.15	

Table S2. The 1st ROP of BnGE using *t*-Bu-P₄ and 2nd ROP of TMC using *t*-Bu-P₂ to produce PBnGE_x-*b*-PTMC_y

^{*a*} The polymerizations of BnGE (M_{1st}) were performed using *t*BBA as the initiator (I) and *t*-Bu-P₄ as the catalyst (Cat_{1st}) in THF at room temperature ($[M_{1st}]_0$, 3 mol L⁻¹; $[I]/[Cat_{1st}]$, 1/0.5). ^{*b*} The polymerizations of TMC (M_{2nd}) were performed using *t*-Bu-P₂ as the catalyst (Cat_{2nd}) after the "organocatalyst switching" procedure using the $[Cat_{1st}]_0/[DPP]_0/[Cat_{2nd}]_0$ ratio of 1:1.3:2.3. ^{*c*} The number average degree of polymerizations of the PBnGE and PTMC units (*x* and *y*, respectively) were determined by ¹H NMR spectra in CDCl₃. ^{*d*} Calculated from the equation: $M_{n,calcd} = \{([M_{1st}]_0/[I]_0) \times (conv. for the 1st ROP) \times (MW of M_{1st})\} + \{([M_{2nd}]_0/[I]_0) \times (conv. for the 2nd ROP) \times (MW of M_{2nd})]\} + \{(MW of I)\}$. ^{*e*} Determined by ¹H NMR spectra in CDCl₃.

Entry	1st ROP of BnGE ^a			2nd ROP of CL ^b			Product				
	$[M_{1st}]_0/[I]_0$	Time (h)	Conv. (%)	[M _{2nd}] ₀ /[I] ₀	Time (h)	Conv. (%)	Code ^c	$M_{ m n,calcd}{}^d$ (kg mol ⁻¹)	$M_{n,NMR}^{e}$ (kg mol ⁻¹)	D^f	
19	50	20	>99	50	6	>99	PBnGE49-b-PCL48	14.1	13.7	1.08	
20	50	20	>99	75	6	>99	PBnGE49-b-PCL72	16.9	16.4	1.10	
21	50	20	>99	100	6	88.5	PBnGE49-b-PCL86	18.5	18.0	1.15	
22	50	20	>99	125	6	84.4	PBnGE49-b-PCL103	20.4	20.0	1.18	
23	50	20	>99	150	6	80.7	PBnGE ₄₉ -b-PCL ₁₂₀	22.4	22.0	1.19	
24	75	20	>99	50	6	>99	PBnGE72- <i>b</i> -PCL48	18.9	17.5	1.10	
25	100	20	>99	50	6	>99	PBnGE97-b-PCL48	22.3	21.6	1.12	
26	125	24	96.4	50	6	>99	PBnGE ₁₁₈ - <i>b</i> -PCL ₄₈	25.7	25.0	1.16	
27	150	28	93.3	50	6	>99	PBnGE136- <i>b</i> -PCL48	28.6	28.0	1.18	

Table S3. The 1st ROP of BnGE using t-Bu-P₄ and 2nd ROP of LLA using t-Bu-P₂ to produce PBnGE_x-b-PCL_y

^{*a*} The polymerizations of BnGE (M_{1st}) were performed using *t*BBA as the initiator (I) and *t*-Bu-P₄ as the catalyst (Cat_{1st}) in THF at room temperature ([M_{1st}]₀, 3 mol L⁻¹; [I]/[Cat_{1st}], 1/0.5). ^{*b*} The polymerizations of CL (M_{2nd}) were performed using *t*-Bu-P₂ as the catalyst (Cat_{2nd}) after the "organocatalyst switching" procedure using the [Cat_{1st}]₀/[DPP]₀/[Cat_{2nd}]₀ ratio of 1:1.3:2.3. ^{*c*} The number average degree of polymerizations of the PBnGE and PCL units (*x* and *y*, respectively) were determined by ¹H NMR spectra in CDCl₃. ^{*d*} Calculated from the equation: $M_{n,calcd} = \{([M_{1st}]_0/[I]_0) \times (\text{conv. for the 1st ROP}) \times (MW \text{ of } M_{1st})\} + \{([M_{2nd}]_0/[I]_0) \times (\text{conv. for the 2nd ROP}) \times (MW \text{ of } M_{2nd})]\} + \{(MW \text{ of } I)\}$. ^{*e*} Determined by ¹H NMR spectra in CDCl₃. ^{*f*} Determined by SEC in THF using PS standards.

2. SEC traces of PBnGE_x-b-PLLA_y, PBnGE_x-b-PTMC_y and PBnGE_x-b-PCL_y

Fig. S1. SEC traces of PBnGE_x-*b*-PLLA_y using THF as the eluent with the flow rate of 1 mL min⁻¹ Entries 1, 2, 3, 4, and 5 in Table S1).

Fig. S2. SEC traces of PBnGE_x-*b*-PTMC_y using THF as the eluent with the flow rate of 1 mL min⁻¹ (Entries 10, 11, 12, 13, and 15 in Table S2).

Fig. S3. SEC traces of PBnGE_{*x*}-*b*-PCL_{*y*} using THF as the eluent with the flow rate of 1 mL min⁻¹ (Entries 19, 20, 21, 22, and 23 in Table S3).

3. ¹H and ¹³C NMR spectra of PBnGE_x-b-PLLA_y, PBnGE_x-b-PTMC_y and PBnGE_x-b-PCL_y

Fig. S4. The ¹H NMR spectrum of PBnGE₄₉-*b*-PLLA₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

Fig. S5. The ¹³C NMR spectrum of PBnGE₄₉-*b*-PLLA₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

Fig. S6. ¹H NMR spectrum of PBnGE₄₉-*b*-PTMC₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

Fig. S7. ¹³C NMR spectrum of PBnGE₄₉-*b*-PTMC₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

Fig. S8. ¹H NMR spectrum of PBnGE₄₉-*b*-PCL₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

Fig. S9. ¹³C NMR spectrum of PBnGE₄₉-*b*-PCL₄₉ in CDCl₃ (the symbol * refers to solvent peaks).

4. Tables for the synthesis and characterizations of PG_x-*b*-PLLA_y, PG_x-*b*-PTMC_y and PG_x-*b*-PCL_y

		V ² - 1.1	Produc	et		$CMC \times 10^3 d$	
Entry	Starting material	(%)	Code	$M_{\rm w,MALS}^{b}$ (kg mol ⁻¹)	а	$(mg mL^{-1})$	
28	PBnGE49-b-PLLA49	88.7	PG48-b-PLLA49	10.6	1.13	5.72	
29	PBnGE49-b-PLLA73	86.2	PG ₄₈ - <i>b</i> -PLLA ₇₃	14.1	1.14	5.32	
30	PBnGE49-b-PLLA92	79.8	PG ₄₈ -b-PLLA ₉₂	16.8	1.17	4.97	
31	PBnGE49-b-PLLA115	80.5	PG ₄₈ - <i>b</i> -PLLA ₁₁₅	20.1	1.18	4.58	
32	PBnGE ₄₉ - <i>b</i> -PLLA ₁₃₂	75.9	PG ₄₈ - <i>b</i> -PLLA ₁₃₂	22.6	1.19	4.22	
33	PBnGE73-b-PLLA49	84.7	PG70-b-PLLA49	12.3	1.14	6.06	
34	PBnGE98-b-PLLA49	77.8	PG95-b-PLLA49	14.1	1.15	6.44	
35	PBnGE115- <i>b</i> -PLLA49	74.2	PG114- <i>b</i> -PLLA49	15.5	1.15	6.73	
36	PBnGE ₁₃₂ - <i>b</i> -PLLA ₄₉	75.5	PG ₁₃₀ - <i>b</i> -PLLA ₄₉	16.7	1.16	7.10	

Table S4. Characterizations of PG_x -*b*-PLLA_y synthesized by de-benzylation of $PBnGE_x$ -*b*-PLLA_y^{*a*}

^{*a*} Determined by the SEC equipped with a MALS in DMF in the presence of 0.01 M LiCl. ^{*b*} Determined by MALS in DMF containing 0.01 mol L⁻¹ LiCl. ^{*c*} Determined by SEC in DMF using PMMA standards. ^{*d*} Determined by fluorescence spectroscopy using pyrene as the probe.

		Viald	Product	_	$CMC \times 10^{3} d$		
Entry	Starting material	(%)	Code	$M_{\rm w,MALS}^{b}$ (kg mol ⁻¹)	а	$(mg mL^{-1})$	
37	PBnGE49-b-PTMC49	89.6	PG ₄₈ - <i>b</i> -PTMC ₄₉	8.6	1.12	3.05	
38	PBnGE49-b-PTMC73	82.1	PG ₄₈ - <i>b</i> -PTMC ₇₃	11.0	1.14	2.62	
39	PBnGE49-b-PTMC95	80.4	PG ₄₈ - <i>b</i> -PTMC ₉₅	13.3	1.17	2.39	
40	PBnGE ₄₉ - <i>b</i> -PTMC ₁₂₅	75.6	PG ₄₇ - <i>b</i> -PTMC ₁₁₄	15.2	1.19	2.08	
41	PBnGE50-b-PTMC150	73.8	PG ₄₈ - <i>b</i> -PTMC ₁₃₀	16.9	1.20	1.66	
42	PBnGE74-b-PTMC49	80.5	PG70- <i>b</i> -PTMC49	10.2	1.12	3.37	
43	PBnGE98-b-PTMC49	82.6	PG94 <i>b</i> -PTMC49	12.0	1.12	3.65	
44	PBnGE ₁₁₄ - <i>b</i> -PTMC ₄₈	78.3	PG ₁₁₀ - <i>b</i> -PTMC ₄₈	13.1	1.14	3.99	
45	PBnGE ₁₃₃ - <i>b</i> -PTMC ₄₈	70.9	PG ₁₂₉ - <i>b</i> -PTMC ₄₈	14.5	1.16	4.27	

Table S5 Characterizations of PG_x-b-PTMC_y synthesized by de-benzylation of PBnGE_x-b-PTMC_y^a

^{*a*} Determined using the SEC equipped with a MALS in DMF in the presence of 0.01 M LiCl. ^{*b*} Determined by MALS in DMF containing 0.01 mol L⁻¹ LiCl. ^{*c*} Determined by SEC in DMF using PMMA standards. ^{*d*} Determined by fluorescence spectroscopy using pyrene as the probe.

		V: 14	Produc		$CMC \times 10^{3} d$	
Entry	Starting material	(%)	Code	$M_{\rm w,MALS}^{b}$ (kg mol ⁻¹)	а	(mg mL^{-1})
46	PBnGE49-b-PCL48	86.7	PG ₄₇ - <i>b</i> -PCL ₄₈	9.0	1.16	0.87
47	PBnGE49-b-PCL72	81.8	PG ₄₇ - <i>b</i> -PCL ₇₂	11.7	1.14	0.62
48	PBnGE49-b-PCL86	78.2	PG ₄₇ - <i>b</i> -PCL ₈₆	13.3	1.17	0.40
49	PBnGE ₄₉ - <i>b</i> -PCL ₁₀₃	76.1	PG47- <i>b</i> -PCL103	15.3	1.19	0.22
50	PBnGE49-b-PCL120	72.9	PG47- <i>b</i> -PCL ₁₂₀	17.2	1.21	0.14
51	PBnGE72- <i>b</i> -PCL48	80.7	PG70- <i>b</i> -PCL48	10.7	1.17	0.93
52	PBnGE97- <i>b</i> -PCL48	78.4	PG93- <i>b</i> -PCL48	12.4	1.13	1.08
53	PBnGE ₁₁₈ - <i>b</i> -PCL ₄₈	79.5	PG ₁₁₂ - <i>b</i> -PCL ₄₈	13.8	1.14	1.35
54	PBnGE ₁₃₆ - <i>b</i> -PCL ₄₈	74.4	PG ₁₃₀ - <i>b</i> -PCL ₄₈	15.1	1.18	1.58

Table S6 Characterizations of PG_x-b-PCL_y synthesized by de-benzylation of PBnGE_x-b-PCL_y^a

^{*a*} Determined by the SEC equipped with a MALS in DMF in the presence of 0.01 M LiCl. ^{*b*} Determined by MALS in DMF containing 0.01 mol L⁻¹ LiCl. ^{*c*} Determined by SEC in DMF using PMMA standards. ^{*d*} Determined by fluorescence spectroscopy using pyrene as the probe.

5. SEC traces of PG_x-b-PLLA_y, PG_x-b-PTMC_y and PG_x-b-PCL_y

Fig. S10. SEC traces of PG_x -*b*-PLLA_y using DMF as the eluent with the flow rate of 1 mL min⁻¹ (Entries 28, 29, 30, 31, and 32 in Table S4).

Fig. S11. SEC traces of PG_x -*b*-PTMC_y using DMF as the eluent with the flow rate of 1 mL min⁻¹ (Entries 37, 38, 39, 40, and 41 in Table S5).

Fig. S12. SEC traces of PG_x -*b*-PCL_y using DMF as the eluent with the flow rate of 1 mL min⁻¹ (Entries 46, 47, 48, 49, and 50 in Table S6).

6. ¹H and ¹³C NMR spectra of PG₄₈-*b*-PLLA₄₉, PG₄₉-*b*-PTMC₄₉ and PG₄₉-*b*-PCL₄₉

Fig. S13. The ¹H NMR spectrum of PG₄₈-*b*-PLLA₄₉ in CD₃OD (the symbol * refers to solvent peaks).

Fig. S14. The ¹³C NMR spectrum of PG_{48} -*b*-PLLA₄₉ in CD₃OD (the symbol * refers to solvent peaks).

Fig. S15. ¹H NMR spectrum of PG₄₉-*b*-PTMC₄₉ in CD₃OD (the symbol * refers to solvent peaks).

Fig. S16. ¹³C NMR spectrum of PG₄₉-*b*-PTMC₄₉ in CD₃OD (the symbol * refers to solvent peaks).

Fig. S17. ¹H NMR spectrum of PG₄₉-*b*-PCL₄₉ in CD₃OD (the symbol * refers to solvent peaks).

Fig. S18. ¹³C NMR spectrum of PG₄₉-*b*-PCL₄₉ in CD₃OD (the symbol * refers to solvent peaks).

7. Table for the hydrodynamic diameters (D_h s) of PG_x-*b*-PLLA_y, PG_x-*b*-PTMC_y and PG_x-*b*-PCL_y

Code	$D_{\rm h}({\rm nm})$	Code	$D_{\rm h}({\rm nm})$	Code	$D_{\rm h}({\rm nm})$
PG ₄₈ -b-PLLA ₄₉	56	PG ₄₈ - <i>b</i> -PTMC ₄₉	62	PG ₄₇ - <i>b</i> -PCL ₄₈	80
PG ₄₈ - <i>b</i> -PLLA ₇₃	60	PG ₄₈ - <i>b</i> -PTMC ₇₃	66	PG ₄₇ - <i>b</i> -PCL ₇₂	84
PG48-b-PLLA92	66	PG48-b-PTMC95	71	PG47- <i>b</i> -PCL86	88
PG ₄₈ - <i>b</i> -PLLA ₁₁₅	74	PG47-b-PTMC114	77	PG47- <i>b</i> -PCL103	92
PG ₄₈ -b-PLLA ₁₃₂	80	PG48- <i>b</i> -PTMC130	84	PG47- <i>b</i> -PCL120	96
PG70-b-PLLA49	75	PG70-b-PTMC49	80	PG70- <i>b</i> -PCL48	87
PG95-b-PLLA49	79	PG94 <i>b</i> -PTMC49	83	PG93- <i>b</i> -PCL48	90
PG114-b-PLLA49	83	PG ₁₁₀ - <i>b</i> -PTMC ₄₈	87	PG112- <i>b</i> -PCL48	94
PG130-b-PLLA49	89	PG129- <i>b</i> -PTMC48	91	PG130- <i>b</i> -PCL48	98

Table S7. The hydrodynamic diameters (*D*_hs) of PG_x-*b*-PLLA_y, PG_x-*b*-PTMC_y and PG_x-*b*-PCL_y