Supporting Information

Clustering-triggered Emission of Poly(vinyl) Alcohol

Jingfei Wang^a, Lifeng Xu^a, Shuangling Zhong^b, Gangying Feng^a, Yongyan Yang^a, Qingye

Meng^a, Yan Gao^{a,c,d}, Xuejun Cui^{a,d}*

a College of Chemistry, Jilin University, Changchun, 130012, P.R. China

b College of Resources and Environment, Jilin Agricultural University, Changchun 130118,

P.R. China

c State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin

University, Changchun, 130012, P.R. China

d Weihai Institute for Bionics-Jilin University, Weihai, 264400, P.R. China

* Corresponding Author Email: cui_xj@jlu.edu.cn

General Experimental Details	2
Fluorescence data of PVA _{0588LV}	S 1
Fluorescence data of PVA ₁₇₈₈	S2
Fluorescence data of PVA _{1788LV}	S3
Fluorescence data of PVA ₁₇₉₉	S4
PL spectra of PVA solutions under different λ_{ex}	S5
PL spectrum of DMSO and PVA ₁₀₅ in DMSO/water mixtures under different λ_{ex}	S6
PL spectrum of pure solvent under different λ_{ex}	S 7
The temperature dependence of PVA ₁₀₅ 's PL spectra	S 8
DLS results of PVA in different viscosity	S9
PL spectra of PVA films	S10
Photos of PVA powders and films	S11
Supplementary data of PVA ₁₀₅ and PVA ₂₂₄	S12
Breaking strength of different PVA films	S13
FT-IR spectra of different PVA	S14
¹ H NMR Spectrum of PVA in D ₂ O at 400 MHz	S15
PL spectra of PVA ₁₀₅ aqueous solutions added with different metal ions	S16
PL spectra of PVA ₁₀₅ aqueous solutions added with different metal ions	S

Experiment Section

Materials.

PVA was purchased from Macklin, (Shanghai, China). Tetrahydrofuran (THF) was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). DMSO, Acetic acid were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Al(NO₃)₃, NaNO₃, Cr(NO₃)₃, CuNO₃, Mg(NO₃)₂, KNO₃, Ca(NO₃)₂, Co(NO₃)₂, CsNO₃, K₂Cr₂O₇ were all obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). The water used in all experiments was distilled water.

Characterizations.

Fluorescence spectra, fluorescent lifetime, quantum yields of the solutions and solids were all recorded on Steady-state Transient Fluorescence Spectrometer using an FLS920 fluorescence spectrophotometer (Edinburgh Instrument Ltd., Livingston, UK). The average particle size and size distribution of the gelatin were characterized on a Brookhaven Zeta Plus potential analyzer (Brookhaven Instruments Corporation, USA) at 25 °C.

PVA solutions were put into PP matrix and dried in vacuum drying oven in 50 °C one day to producted PVA films. The films were cut into 1.5 cm*1.5 cm squares. The strength of films were tested in CMT-005L Electronic Universal Testing Machine (Liangong Testing Technology Co.Ltd, Jinan). The test spacing is 60 mm, tensile speed is 100 mm/min.

Purification and Preparation of PVA

The distilled water was heated to 70°C in water bath magnetic stirrer for 20 minutes, then PVA powder was put into hot water in the stirring process and heated to 90°C. The solution

was stirred for 2 hours to produced PVA aqueous solutions. Then THF (water/THF, 1/10, v/v) is added as a non-solvent to precipitate PVA. The precipitate was collected after centrifuging. After centrifuging, the collected powder was dried in a freeze dryer for 24 hours, and then refrigerated for later use. Next, preparing PVA solutions of different concentrations to measure fluorescence property.

Results and Discussion

Figure S1. PVA_{0588LV} A) solution with different concentration and B) water/DMSO mixtures with different DMSO fraction photos taken under 365 nm UV light. C) PL spectra of PVA_{0588LV} solutions in different concentration. λ_{ex} =370 nm. D) Fluorescence lifetime of PVA_{0588LV} powders and solution. E) PL spectra of PVA_{0588LV} solution with different λ_{ex} . F) Fluorescence lifetime of 20 mg mL⁻¹ PVA_{0588LV} solutions monitored at 370 nm and 400 nm. G) PL spectra of PVA_{0588LV} water/DMSO mixtures. H) Fluorescence lifetime of PVA_{0588LV} water/DMSO mixtures. I) DLS result of PVA_{0588LV} in mixtures (10/90) of water and DMSO. J) PL spectra of PVA_{0588LV} aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹).

Figure S2. PVA₁₇₈₈ A) solution with different concentration and B) water/THF mixtures with different THF fraction photos taken under 365 nm UV light. C) PL spectra of PVA₁₇₈₈ solutions in different concentration. λ_{ex} =370 nm. D) Fluorescence lifetime of PVA₁₇₈₈ powders and solution. E) PL spectra of PVA₁₇₈₈ solution with different λ_{ex} . F) Fluorescence lifetime of 20 mg mL⁻¹ PVA₁₇₈₈ solutions monitored at 370 nm and 400 nm. G) PL spectra of PVA₁₇₈₈ water/THF mixtures. H) Fluorescence lifetime of PVA₁₇₈₈ water/THF mixtures. I) DLS result of PVA₁₇₈₈ in mixtures (20/80) of water and THF. J) PL spectra of PVA₁₇₈₈ aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹).

Figure S3. PVA_{1788LV} A) solution with different concentration and B) water/THF mixtures with different THF fraction photos taken under 365 nm UV light. C) PL spectra of PVA_{1788} solutions in different concentration. λ_{ex} =370 nm. D) Fluorescence lifetime of PVA_{1788LV} powders and solution. E) PL spectra of $PVA_{1788 \text{ low-viscosity}}$ solution with different λ_{ex} . F) Fluorescence lifetime of 20 mg mL⁻¹ PVA_{1788LV} solutions monitored at 370 nm and 400 nm. G) PL spectra of PVA_{1788LV} water/THF mixtures. H) Fluorescence lifetime of PVA_{1788LV} water/THF mixtures. I) DLS result of PVA_{1788LV} in mixtures (20/80) of water and THF. J) PL spectra of PVA_{1788LV} aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹).

Figure S4. PVA₁₇₉₉ A) solution with different concentration and B) water/DMSO mixtures with different DMSO fraction photos taken under 365 nm UV light. C) PL spectra of PVA₁₇₉₉ solutions in different concentration. λ_{ex} =370 nm. D) Fluorescence lifetime of PVA₁₇₉₉ powders and solution. E) PL spectra of PVA₁₇₉₉ solution with different λ_{ex} . F) Fluorescence lifetime of 20 mg mL⁻¹ PVA₁₇₉₉ solutions monitored at 370 nm and 400 nm. G) PL spectra of PVA₁₇₉₉ water/DMSO mixtures. H) Fluorescence lifetime of PVA₁₇₉₉ water/DMSO mixtures. I) DLS result of PVA₁₇₉₉ in mixtures (10/90) of water and DMSO. J) PL spectra of PVA₁₇₉₉ aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹).

Figure S5. PL spectrum of PVA solutions (20 mg mL⁻¹) under different λ_{ex} .

Figure S6. (A) PL spectrum of DMSO under different λ_{ex} . (B) PL spectra of PVA₁₀₅ in mixtures (20/80) of water and DMSO solution with different λ_{ex} .

Figure S7. PL spectrum of pure solvent (deionized water) under different λ_{ex}

Figure S8. (A) Temperature dependence of PVA_{105} 's fluorescence spectra under the excitation of 370 nm. (B) Plots of PL intensity of PVA_{105} solution (20 mg mL⁻¹) in different temperature.

Figure S9. DLS results of (A) 10 mg mL⁻¹ and (B) 20 mg mL⁻¹ PVA₁₇₈₈, (C) 10 mg mL⁻¹ and (D) 20 mg mL⁻¹ PVA_{1788LV}.

Figure S10. PL spectra of A) PVA₁₀₅, B) PVA₂₂₄, C) PVA_{0588LV}, D) PVA₁₇₈₈, E) PVA_{1788LV} and F) PVA₁₇₉₉ films.

Figure S11. Photos taken under nature and 365 nm UV light of A) PVA₁₀₅, B) PVA₂₂₄, C) PVA_{0588LV}, D) PVA₁₇₈₈, E) PVA_{1788LV} and F) PVA₁₇₉₉ powders and films

Figure S12. A) Fluorescence lifetime of PVA_{105} powders and solution. B) PL spectra of PVA_{224} aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹). C) Fluorescence lifetime of PVA_{224} powders and solution.

Figure S13. Breaking strength of different PVA films.

The breaking strength of PVA film was affected by DP and viscosity. For PVA_{105} and PVA_{0588LV} , films with low DP and viscosity show high level breaking strength. PVA with high viscosity show good tenacity and difficult to break.

Figure S15. ¹H NMR Spectrum of PVA in D₂O at 400 MHz.

Figure S16. PL spectra of PVA_{105} aqueous solutions (10 mg mL⁻¹) added with different metal ions of same concentration (1 mg mL⁻¹).