Supplementary information

Rehabilitation Physical, Mechanical, Antibacterial and Cell growth Properties of Bio-Rubber Polymers Based on Poly(Glycerol Sebacic acid) with Helping Curcumin and Hydroxyapatite Nanoparticles

Vafa Fakhri^a, Aliakbar Jafari^a, Mir Alireza Shafiei^a, Mohammad Vahid Ehteshamfar^b, Shima

Khalighian^c, Hadi Hosseini^d, Vahabodin Goodarzi^e*, Frederik R. Wurm^{f*}, Mehrdad Moosazadeh

Moghaddam^e, and Hossein Ali Khonakdar^{g,h}

^a Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

^b Department of Mechanical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15875-4413, Iran

^c Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 19395-1495, Tehran, Iran

^aFaculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran.

^e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 19945-546, Tehran, Iran

^f Sustainable Polymer Chemistry Group, Department of Molecules and Materials MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands

^g Department of Processing, Iran Polymer and Petrochemical Institute, PO Box 14965/115 Tehran, Iran

^h Reactive processing, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany

* Corresponding author

V. Goodarzi

Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran

Email: v.goodarzi@hotmail.com & goodarzi@bmsu.ac.ir

Frederik R. Wurm

Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands

Email: f.r.wurm@utwente.nl

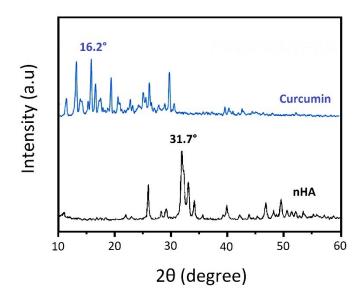


Figure S1. X-ray diffraction of curcumin powder and hydroxyapatite nanoparticles.

Figure S2. Effect of multi frequencies on loss factor (Tan δ) of investigated PGSU-based elastomers: (a) PGSU-HA and (b) PGSU-Cu

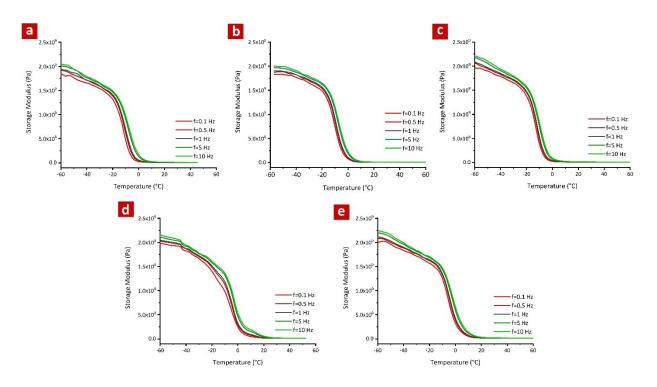


Figure S3. Effect of multi frequencies on storage modulus (E') of investigated PGSU-based elastomers: (a) PGSU, (b) PGSU-HA, (C) PGSU-Cu, (d) PGSU-HA-Cu5 and (e) PGSU-HA-Cu3

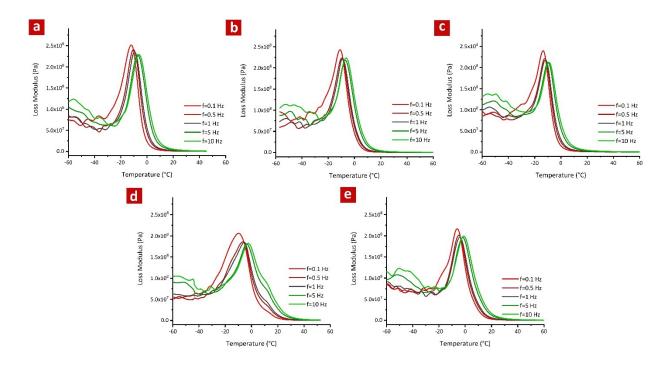


Figure S4. Effect of multi frequencies on loss modulus (E") of investigated PGSU-based elastomers: (a) PGSU, (b) PGSU-HA, (C) PGSU-Cu, (d) PGSU-HA-Cu5 and (e) PGSU-HA-Cu3

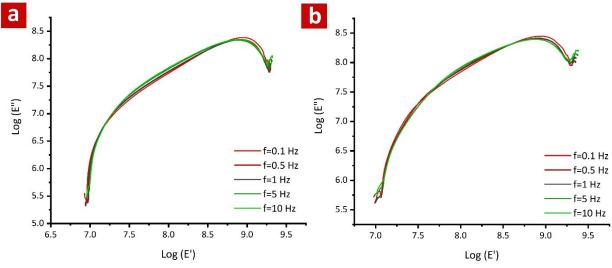


Figure S5. Cole-Cole plots at various frequencies: (a) PGSU-HA and (b) PGSU-Cu.

1. Generating Master curves

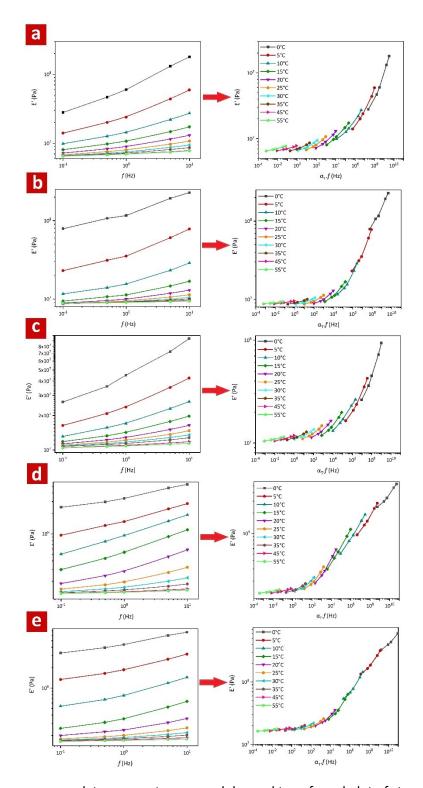
For storage modulus, TTS principle can be expressed by the equation S1:

$$E'(f a_T, T_r) = E'(f, T)$$
(S1)

Where a_{τ} , f and T_r are the horizontal shift factor, frequency and the reference temperature, respectively. In the temperature range of Tg to Tg+100 °C, the shift factor (a_{τ}) can be calculated by the Williams-Landel-Ferry (WLF) equation expressed as:¹

$$Log(a_t) = \frac{-C_1(T - T_0)}{C_2 + (T - T_0)}$$
(S2)

Where T_0 is the reference temperature and C_1 and C_2 are WLF constants. If T_g is taken as T_0 , the C_1 and C_2 are equal to 17.4 and 51.6, respectively. For other reference temperatures the WLF constants (C_1^0 and C_2^0) can be calculated by the following equations:¹


$$C_1^0 = \frac{C_1^g C_2^g}{C_1^g + T_0 - T_g}$$
(S3)

$$C_2^0 = C_2^g + T_0 - T_g (S4)$$

Where C_1^{g} and C_2^{g} are WLF constant at T_{g} .

Sample	T _g (°C)	WLF Constant (C ₁)	WLF Constant (C ₂)	$Log(a_7)$									
Sumple				0(°C)	5(°C)	10(°C)	15(°C)	20(°C)	25(°C)	30(°C)	35(°C)	45(°C)	55(°C)
PGSU	-9.5	14.0742	98.1	8.523	6.814	5.345	4.069	2.950	1.962	1.081	0.293	-1.061	-2.182
PGSU-HA	-9	14.1851	97.6	8.661	6.920	5.425	4.128	2.992	1.989	1.096	0.297	-1.075	-2.209
PGSU-Cu	-11.5	13.6473	100.1	8.002	6.413	5.041	3.844	2.792	1.859	1.026	0.278	-1.010	-2.080
PGSU-	-5.5	15.0134	94.1										
HA-Cu5				9.728	7.736	6.041	4.581	3.310	2.194	1.207	0.326	-1.176	-2.411
PGSU-	-4	15.3988	92.6										
HA-Cu3				10.247	8.131	6.338	4.798	3.463	2.293	1.259	0.340	-1.225	-2.506

Table S1. WLF constants and calculated $log(a_T)$ for all samples at a reference temperature of 37°C.

Figure S6. Frequency sweep data versus storage modulus and transferred plot of storage modulus of (a) PGSU, (b) PGSU-HA, (c) PGSU-Cu, (d) PGSU-HA-Cu5, and (e) PGSU-HA-Cu3 at a reference temperature of

2. Calculating surface tension

Wetting phenomena on a macroscopic scale can be shown by Young's equation.²

$$\gamma_{lv} \cos \theta = \gamma_{sv} - \gamma_{sl} \tag{S5}$$

Where θ is the contact angle, γ_{sl} is solid-liquid interfacial free energy, γ_{lv} is liquid surface tension and γ_{sv} is solid surface free energy.

The solid surface free energy of an unknown material can be calculated through Owens-Wendt method:^{2,3}

$$\gamma_{sl} = \gamma_{sv} + \gamma_{lv} - 2(\sqrt{\gamma_{sv}^D \gamma_{lv}^D} + \sqrt{\gamma_{sv}^P \gamma_{lv}^P})$$
(S6)

Where $\gamma_{sv}{}^{D}$ and $\gamma_{lv}{}^{D}$ are dispersive portions and $\gamma_{sv}{}^{P}$ and $\gamma_{lv}{}^{P}$ are polar portions of solid and liquid surface energies, respectively. By combining Eq.S5 and Eq.S6:

$$\sqrt{\gamma_{sv}^D \gamma_{lv}^D} + \sqrt{\gamma_{sv}^P \gamma_{lv}^P} = 0.5[\gamma_{lv}(1 + \cos\theta)]$$
(S7)

The solid surface free energy of an unknown material can also be calculated through Wu- harmonicmean equation:³

$$\gamma_{sl} = \gamma_{sv} + \gamma_{lv} - 4\left(\frac{\gamma_{sv}^d \gamma_{lv}^d}{\gamma_{sv}^d + \gamma_{lv}^d} + \frac{\gamma_{sv}^p \gamma_{lv}^p}{\gamma_{sv}^p + \gamma_{lv}^p}\right)$$
(S8)

By combining Eq.S8 and Eq.S5:

$$\frac{\gamma_{sv}^d \gamma_{lv}^d}{\gamma_{sv}^d + \gamma_{lv}^d} + \frac{\gamma_{sv}^p \gamma_{lv}^p}{\gamma_{sv}^p + \gamma_{lv}^p} = 0.25[\gamma_{lv}(1 + \cos\theta)]$$
(S9)

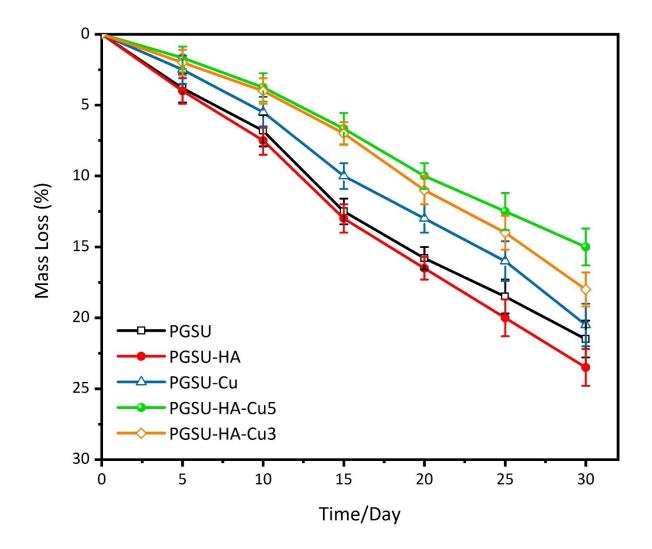


Figure S7. In-vitro enzymatic degradations profile of the bioelastomers in PBS solution (pH=7.4) at 37 °C

References:

- Landel RF, Nielsen LE. *Mechanical Properties of Polymers and Composites*. CRC Press; 1993. doi:10.1201/b16929
- 2. Annamalai M, Gopinadhan K, Han SA, et al. Surface energy and wettability of van der Waals structures. *Nanoscale*. 2016;8(10):5764-5770. doi:10.1039/C5NR06705G
- Fakhri V, Monem M, Mir Mohamad Sadeghi G, Khonakdar HA, Goodarzi V, Karimpour-Motlagh N.
 Impact of poly(ε-caprolactone) on the thermal, dynamic-mechanical and crystallization behavior of polyvinylidene fluoride/poly(ε-caprolactone) blends in the presence of KIT-6 mesoporous

particles. Polym Adv Technol. 2021;n/a(n/a). doi:https://doi.org/10.1002/pat.5444