Supplementary information

Dissociate Transfer Exchange of Tandem Dynamic Bonds Enables Covalent

Adaptable Networks Fast Reprocessability & High Performance

Xiwei Xu,^{a,b} Songqi Ma,^{a*} Hongzhi Feng,^{a,b} Jianfan Qiu,^{a,b} Sheng Wang,^{a,b} Zhen Yu,^a Jin Zhu^{a*}

^a Key laboratory of bio-based polymeric materials technology and application of Zhejiang province,

Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering,

Chinese Academy of Sciences, Ningbo 315201, P. R. China;

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China;

*Corresponding authors: (Songqi Ma) E-mail masongqi@nimte.ac.cn, Tel 86-0574-87619806; (Jin

Zhu) E-mail jzhu@nimte.ac.cn.

Contents

Synthesis of disulfanediylbis(4,1-phenylene)bis(1-phenylmethanimine) (DSBP)2	
Scheme S1 Synthetic route of DSBP2	
Synthesis of di- <i>p</i> -tolylmethanimine (DTMI)	
Scheme S2 Synthetic route of DTMI	
Fig. S1 ¹ H NMR spectrum of DDMEP	
Fig. S2 ¹³ C NMR spectrum of DDMEP	
Fig. S3 ¹ H NMR spectrum of SEP4	
Fig. S4 ¹³ C NMR spectrum of SEP4	
Fig. S5 ¹ H NMR spectrum of DSBP4	
Fig. S6 ¹ H NMR spectrum of DTMI	
Fig. S7 ¹ H NMR spectra of DSDA, D400 and their mixture before and after heating at 150 °C for 2 h.	
5	
Fig. S8 GC spectra of D400, DSDA and their mixture before and after heating at 150 °C for 2 h6	
Fig. S9 Enlarged spectra of Fig. S8 at the retention time between 6-6.75 min	
Fig. S10 MS spectrum of compound a in Fig. S8	
Fig. S11 MS spectrum of compound b in Fig. S87	
Fig. S12 DSC curves of the SEP-D400 system at different heating rates7	
Fig. S13 DSC curves of the DDMEP-D400 system at different heating rates7	
Fig. S14 DSC curves of the DSEP-D400 system at different heating rates	
Fig. S15 Linear plots of $-\ln(q)$ versus $1/T_p$ based on Ozawa's theory	
Fig. S16 Linear plots of $-\ln (q/T_p^2)$ versus $1/T_p$ based on Kissinger's equation	
Fig. S17 Stress relaxation curves of DSEP-D400 at different temperatures	
Fig. S18 Stress relaxation curves of DDMEP-D400 at different temperatures	

Fig. S19 Stress relaxation curves of DDMEP-SEP-D400 at different temperatures
Fig. S20 Stress relaxation curves of SEP-D400 at different temperatures 10
Fig. S21 The fitted curves between $\ln(\tau^*)$ and $1000/T$ and the calculated E s of the CANs 10
Fig. S22 FTIR spectra of DSEP. D400 after reprocessing by hot press at 160 °C 10 MPa for different
times
times
Fig. S23 Representative tensile stress-strain curves of DSEP-D400 after reprocessing by not press at
160 °C, 10 MPa for different times.
Fig. S24 Young's modulus, elongation at break and tensile strength of the original and extruded
DSEP-D40011
Fig. S25 Representative tensile stress-strain curves of DSEP-D400, DDMEP-SEP-D400, DDMEP-
D400 and SEP-D400
Fig. S26 DSC curves of DSEP-D400, DDMEP-SEP-D400, DDMEP-D400 and SEP-D40012
Fig. S27 DMA curves of DDMEP-D400 and DSEP-D40012
Fig. S28 DMA curves of DDMEP-SEP-D400 and SEP-D40013
Fig. S29 Creep curves of DSEP -D400
Fig. S30 Strain recovery of DSEP -D400
Fig. S31 Young's modulus, elongation at break and tensile strength of the original and welded DSEP-
D40014
Fig. S32 Degradation rate of DDMEP-D400 and DSEP-D400 in 1 M HCl water/main solvent (2/8, v/v)
solution with different main solvent at room temperature and 50 °C14
Fig. S33 Swelling degree of DDMEP-D400 and DSEP-D400 in water/main solvent (2/8, v/v) solution
with different main solvent at room temperature and 50 °C
Table S1 Formulations of different samples
Table S2 Peak temperatures of the non-isothermal DSC curves of different curing systems at different
heating rates and their activation energies $(E_a s)$
Table S3 Mechanical Properties of DSEP-D400 before and after recycling
Table S4 Mechanical properties of different samples. 16
Table S5 Thermal properties of different samples. 16
References

Synthesis of disulfanediylbis(4,1-phenylene)bis(1-phenylmethanimine) (DSBP)

4.96 g (0.02 mol) of 4,4'-dithiodianiline and 4.24 g (0.04 mol) of benzaldehyde were dissolved in 200 mL of EtOH, and poured into a 500-mL flask equipped with a magnetic stirrer. The mixture reacted at 50 °C for 2 h, and a large amount of light-yellow powder disulfanediylbis(4,1-phenylene)bis(1-phenylmethanimine) (DSBP, 6.98 g, yield: 82.2%) was obtained by suction and being dried in a vacuum oven at 80 °C for 4 h.

Scheme S1 Synthetic route of DSBP.

Synthesis of di-p-tolylmethanimine (DTMI)

2.40 g (0.02 mol) of *p*-tolualdehyde and 2.14 g (0.02 mol) of *p*-toluidine were dissolved in 100 mL EtOH, and poured into a 250-mL flask equipped with a magnetic stirrer. The mixture reacted at 50 °C for 2 h, and yellow solution was obtained. Then rotary steaming the solution to about 20 mL at *R.T.*, a large amount of transparent crystal di-*p*-tolylmethanimine (DTMI, 3.28 g, yield: 78.5%) was obtained by suction and being dried in a vacuum oven at 80 °C for 4 h.

Scheme S2 Synthetic route of DTMI.

Fig. S2 ¹³C NMR spectrum of DDMEP.

Fig. S3 ¹H NMR spectrum of SEP.

Fig. S4 ¹³C NMR spectrum of SEP.

Fig. S5 ¹H NMR spectrum of DSBP.

Fig. S6 ¹H NMR spectrum of DTMI.

Fig. S7 ¹H NMR spectra of DSDA, D400 and their mixture before and after heating at 150 °C for 2 h.

Fig. S8 GC spectra of D400, DSDA and their mixture before and after heating at 150 °C for 2 h.

Fig. S9 Enlarged spectra of Fig. S8 at the retention time between 6-6.75 min.

Fig. S10 MS spectrum of compound a in Fig. S8.

Fig. S11 MS spectrum of compound b in Fig. S8.

Fig. S12 DSC curves of the SEP-D400 system at different heating rates.

Fig. S13 DSC curves of the DDMEP-D400 system at different heating rates.

Fig. S14 DSC curves of the DSEP-D400 system at different heating rates.

Fig. S15 Linear plots of $-\ln(q)$ versus $1/T_p$ based on Ozawa's theory.

Fig. S16 Linear plots of $-\ln (q/T_p^2)$ versus $1/T_p$ based on Kissinger's equation.

Fig. S17 Stress relaxation curves of DSEP-D400 at different temperatures.

Fig. S18 Stress relaxation curves of DDMEP-D400 at different temperatures.

Fig. S19 Stress relaxation curves of DDMEP-SEP-D400 at different temperatures.

Fig. S20 Stress relaxation curves of SEP-D400 at different temperatures.

Fig. S21 The fitted curves between $\ln(\tau^*)$ and 1000/T, and the calculated E_a s of the CANs.

Fig. S22 FTIR spectra of DSEP-D400 after reprocessing by hot press at 160 °C, 10 MPa for different times.

Fig. S23 Representative tensile stress-strain curves of DSEP-D400 after reprocessing by hot press at 160 °C, 10 MPa for different times.

Fig. S24 Young's modulus, elongation at break and tensile strength of the original and extruded DSEP-D400.

Fig. S25 Representative tensile stress-strain curves of DSEP-D400, DDMEP-SEP-D400, DDMEP-D400 and SEP-D400.

Fig. S26 DSC curves of DSEP-D400, DDMEP-SEP-D400, DDMEP-D400 and SEP-D400.

Fig. S27 DMA curves of DDMEP-D400 and DSEP-D400.

Fig. S28 DMA curves of DDMEP-SEP-D400 and SEP-D400.

Fig. S29 Creep curves of DSEP -D400.

Fig. S30 Strain recovery of DSEP -D400.

Fig. S31 Young's modulus, elongation at break and tensile strength of the original and welded DSEP-D400.

Fig. S32 Degradation rate of DDMEP-D400 and DSEP-D400 in 1 M HCl water/main solvent (2/8, v/v) solution with different main solvent at room temperature and 50 °C.

Fig. S33 Swelling degree of DDMEP-D400 and DSEP-D400 in water/main solvent (2/8, v/v) solution with different main solvent at room temperature and 50 °C.

Sample	DSEP (g)	DDMEP (g)	SEP (g)	D400 (g)
DSEP-D400	5.69	/	/	2.00
DDMEP-D400	/	5.19	/	2.00
DDMEP-SEP-D400	/	2.59	1.81	2.00
SEP-D400	/	/	3.62	2.00

 Table S1 Formulations of different samples.

Table S2 Peak temperatures of the non-isothermal DSC curves of different curing systems at different heating rates and their activation energies (E_a s).

Sample	T_p under different heating rates (K)				E_a s (kJ mol ⁻¹)	
	5 °C min ⁻¹	10 °C min ⁻¹	15 °C min ⁻¹	15 °C min ⁻¹	Kissinger	Ozawa
DSEP	409	423	433	439	64.9	67.9
DDMEP	403	418	426	433	61.5	65.2
SEP	393	402	412	419	67.4	70.8

Table S3 Mechanical Properties of DSEP-D400 before and after recycling.

Sample	Young's modulus	Tensile strength	Elongation at	
Sumple	(MPa)	(MPa)	break (%)	
Original	2072±49	55±7	6.91±0.81	
Hot press-5 min	1920±62	47±4	2.95±0.36	
Hot press-10 min	1980±48	53±4	5.93±0.49	
Hot press-20 min	2040±35	56±5	6.15±0.61	
Welding	1973±46	52±4	5.82±0.37	

Sample	Young's modulus	Tensile strength	Elongation at	
Sample	(MPa)	(MPa)	break (%)	
DSEP-D400	2072±49	55±7	6.91±0.81	
DDMEP-D400	2170±73	56±4	6.77±0.72	
DDMEP-SEP-D400	1869±67	56±4	5.75 ± 0.48	
SEP-D400	1140±86	36±6	4.28±0.55	
DER331-D4001	1186±14	36±3	6.1±0.3	

Table S4 Mechanical properties of different samples.

Table S5 Thermal properties of different samples.

Sample	<i>T_g</i> (°C, DSC)	<i>T_g</i> (°C, DMA)	E' (MPa)	v_e (mol cm ⁻³)	<i>T_{d5%}</i> (°C)	<i>Т_{d30%}</i> (°С)	R ₈₀₀ (%)	<i>T</i> s (°C)
DSEP-D400	99	137	14.33	1274	273	322	27.08	148
DDMEP-D400	103	129	14.74	1315	279	354	32.69	159
DDMEP-SEP-D400	85	93	14.47	1465	303	350	25.21	162
SEP-D400	45	55	13.72	1536	290	327	11.92	153
DER331-D4001	53	55	8.77	1068	367	388	6.39	186

 $T_s = 0.49 [T_{d5\%} + 0.6 (T_{d30\%} - T_{d5\%})]$

References

1 X. Xu, S. Ma, S. Wang, J. Wu, Q. Li, N. Lu, Y. Liu, J. Yang, J. Feng and J. Zhu, *J. Mater. Chem. A*, 2020, **8**, 11261-11274.