SUPPORTING INFORMATION

Non-Traditional Intrinsic Luminescence from Non-Conjugated Polymer Dots: Designing a Hybrid Biomaterial

Rafaella F. Fernandes (*), Giordano T. Paganoto and Marcia L.A.

Temperini

Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.

> *Corresponding author. E-mail address: rafaella.ffernandes@usp.br<u>luiz.oliveira@ufjf.edu.br</u>

INDEX

1. CHARACTERIZATION OF NCPDs

1.1 Dynamic Light Scattering	Figure S1
1.2 Quantum yield calculations	Figure S2
1.3 Elemental analysis (% CHN)	Figure S3
1.4 Vibrational assignments	Table S1

2. CHARACTERIZATION OF CARBON DOTS FROM β -GLUCAN

2.1 UV/ VIS spectrum	Figure S4
2.2 Fluorescence emission spectra	Figure S5
2.3 Quantum yield calculations	Figure S6
2.4 Raman spectra	Figure S7

3. CHARACTERIZATION OF THE METALLIC NANOPARTICLES

3.1	TEM images and size distribution	 Figure	S 8
		0	

Figure S1: DLS size distribution of hybrid nanomaterial sample showing a diameter of about 145 nm.

Figure S2: Different concentrations of NCPD (red) and quinine sulfate (blue), plotted by integrated PL intensity vs. absorbance and fitted for calculating the quantum yield, expressed in %.

Figure S3: Elemental Analysis of NCPDs sample

NCPDs	% Carbon	% Hydrogen	% Nitrogen	
Measurement 1	38.24	6.49	0.45	
Measurement 2 38.35		6.56	0.48	

Table S1: Tentative of vibrational assignment of NCPDs

FT-Raman	IR SER 633 I		RS SE nm 532		ERS 2 nm	Assignments
		AuNP	AgNP	AuNP	AgNP	
	3321 s					ν(NH ₂), ν(OH)
2967 sh						ν(CH ₃)
2932 s						ν(CH ₂)
2912 s	2912 m					ν(CH)
	1708 w					v(C=O)
	1645 s				1656 w	Amide I
	1635 broad					δ(H ₂ O)
1617 s			1616 m		1605 w	ν _{as} (COO⁻), ω(CH₂), δ(NH₃)⁺
	1540 m				1547 w	Amide II
1459 m	1460 sh	1459 m	1460 m		1475 w	δ(CH ₂)
		1440 m	1440 m			β(CH ₂)
1410 w						ν _s (COO ⁻), β(CH ₂)
1367 s	1365 m	1367 m	1357 m		1365 w	δ(COH), δ(CH)
1330 s	1330 m	1315 s	1315 s		1323 w	ω(CH ₂), ν(COO⁻), δ(NH ₃)⁺
		1296 m	1293 m		1296 w	τ(CH ₂ , HCC)
1259 w	1263 m	1254 m	1255 w			δ(CH), CH₂OH
1196 w	1196 w					δ(CH), CH₂OH
	1143 m	1143 w	1142 w			ν(COC), δ(COH), δ(OCH)
1120 m						
1089 s	1067 sh	1089 w	1098 w			δ(CO)
	1018 s					ν(CO)
	996 sh					C-O valence vibration
893 w	893 m	889 m	889 w			δ (C1-H) - beta
765 m						ω(COO ⁻)

Key: s – strong, m – medium, w – weak, sh – shoulder, v - stretching, δ – bending, σ rocking, β - scissoring, ω - wagging.

Figure S4: UV/Vis absorption spectrum of the β -glucan chemically extracted from the Usnea lichen after the heating process to provide the carbon dots.

Figure S5: Emission-dependent PL spectra of the carbon dots from β -glucan

Figure S6: Different concentrations of carbon dots from β -glucan (red) and quinine sulfate (blue), plotted by integrated PL intensity vs. absorbance and fitted for calculating the quantum yield, expressed in %.

Figure S7: Raman spectra of the β -glucan before (red) and after (black) the heating process to provide the carbon dots showing the new band at 1630 cm⁻¹ due to the v(COO⁻) vibrational mode.

Figure S8: TEM images of A) AuNP and B) AgNP. Size distribution of C) AuNP and D) AgNP. The red and blue lines mean the size of nanoparticles.

