SUPPORTING INFORMATION

Electroactive 3D printable poly(3,4-ethylenedioxythiophene)-graftpoly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment

Antonio Dominguez-Alfaro, ${ }^{\text {a,b }}$ Miryam Criado-Gonzalez, ${ }^{a}$ Elena Gabirondo, ${ }^{a}$ Haizpea Lasa-Fernández, ${ }^{\text {b }}$ Jorge Olmedo, ${ }^{\text {a }}$ Nerea Casado, ${ }^{\text {a }}$ Nuria Alegret, ${ }^{\mathrm{b}, \mathrm{c}}$ Alejandro Muller, ${ }^{\text {a,e }}$ Haritz Sardon, ${ }^{\text {a }}$ Ainara VallejoIllarramendi, ${ }^{\text {c,d }}$ and David Mecerreyes*a,e
${ }^{\text {a }}$ POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 DonostiaSan Sebastián, Spain
${ }^{\text {b }}$ Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
${ }^{c}$ IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases. Paseo Dr. Begiristain s/n, 20014 San Sebastian, Spain
${ }^{d}$ Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, UPV/EHU, Paseo Dr. Begiristain 105, 20014 San Sebastian, Spain
${ }^{\mathrm{e}}$ Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
a)

1
34

b)

c)

Figure S1. a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and b) ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of EDOT-PCL ${ }_{4 \mathrm{k}}$ macromonomers obtained by bulk ring-opening polymerization of ε-caprolactone using hydroxyl methyl EDOT as initiator and a mixture of MSA:DMAP as organocatalysts. c) MALDI-TOF of the PCL ${ }_{4 k}$ indicating a monomodal mass profile distribution.

Table S1. Molecular weight, determined by SEC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and polydispersity of the EDOTPCL macromonomers synthesized. Synthetic conditions carried out in bulk at $130^{\circ} \mathrm{C}$ for 5 days and using MSA:DMAP as organocatalyst.

Macromonomer $\mathbf{M}_{\mathbf{n}}\left(\mathbf{g ~ m o l}^{-1}\right)^{a}$	$\mathbf{M}_{\mathbf{n}}\left(\mathbf{g ~ m o l}^{-1}\right)^{b}$	$\mathbf{M}_{\mathrm{n}}\left(\mathbf{g ~ m o l}^{-1}\right)^{\boldsymbol{c}}$	$\mathbf{P D I}^{\boldsymbol{d}}$	
$\mathrm{PCL}_{16 \mathrm{k}}$	16000	15400	15221	1.56
$\mathrm{PCL}_{8 \mathrm{k}}$	7500	8200	8941	1.93
$\mathrm{PCL}_{4 \mathrm{k}}$	4000	3600	4414	1.46

[^0]

Figure S2. UV-vis spectra of PCL macromonomer and the copolymers PEDOT- g-PCL 8 sk synthesized with different PEDOT compositions 16, 26 and $68 \% w t$.

Figure S3. a) TGA spectra of both polymers, PEDOT and PCL, and blends with different PEDOT percentages $25,40,50$ and 60%, to obtain b) the calibration curve employed to determine the PEDOT percentage in the synthesized PEDOT-g-PCL copolymers. The dashed line shows the linear fitting expressed as: weight loss $(\%)=0.39+4.29 \cdot$ PEDOT (\%)

Figure S4. DSC of the PCL macromonomers synthesized with different number average molecular weights ($\mathrm{M}_{\mathrm{n}}=4 \mathrm{k}, 8 \mathrm{k}$ and 16 k) and their corresponding graft copolymers a) PEDOT- g PCL $_{4 k}$, b) PEDOT- $g-$ PCL $_{8 k}$ and c) PEDOT- $g-$ PCL $_{16 k}$.

Figure S5. Storage modulus (G^{\prime}) and loss modulus ($\mathrm{G}^{\prime \prime}$) at $65{ }^{\circ} \mathrm{C}$ of PCL macromonomers synthesized with different number average molecular weights ($\mathrm{M}_{\mathrm{n}}=8 \mathrm{k}$ and 16 k) and their corresponding graft copolymers a) PEDOT- $g-$ PCL $_{8 k}$, and b) PEDOT- $g-$ PCL $_{16 k}$.

Figure S6. Photographs and SEM images of different printed patterns to show the highresolution and shapes. a) PCL macromonomers ($\mathrm{M}_{\mathrm{n}}=8 \mathrm{k}$ and 16k), and their corresponding graft copolymers PEDOT- $g-$ PCL $_{8 k}$ and PEDOT- $g-$ PCL $_{16 k}$. Note that yellow circles highlight the size of the crystals.

Figure S7. Cyclic voltammograms of 16% PEDOT- $g-$ PCL $_{8 k}$ at different scan rates, as shown in the legend of the figure.

Figure S8. Water contact angle (WCA) of the printed patterns made of $\mathrm{PCL}_{16 \mathrm{k}}$ macromonomer and the graft copolymer 16% PEDOT- g - PCL $_{8 k}$. Results show the mean \pm standard deviation of three samples.

[^0]: ${ }^{a}$ Theoretical number-average molecular weight
 ${ }^{b}$ Experimental number-average molecular weight calculated with ${ }^{1} \mathrm{H}-\mathrm{NMR}$
 ${ }^{\text {c Experimental number-average molecular weight calculated with SEC using PS standards }}$
 ${ }^{d}$ Dispersity $=M_{w} / M_{n}$ calculated by SEC

