SUPPORTING INFORMATION

Electroactive 3D printable poly(3,4-ethylenedioxythiophene)-graftpoly(ε-caprolactone) copolymers as scaffolds for muscle cell alignment

Antonio Dominguez-Alfaro,^{a,b} Miryam Criado-Gonzalez,^a Elena Gabirondo,^a Haizpea Lasa-Fernández,^b Jorge Olmedo,^a Nerea Casado,^a Nuria Alegret,^{b,c} Alejandro Muller,^{a,e} Haritz Sardon,^a Ainara Vallejo-Illarramendi,^{c,d} and David Mecerreyes^{*a,e}

^a POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain

^b Carbon Bionanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain

^c IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases. Paseo Dr. Begiristain s/n, 20014 San Sebastian, Spain

^d Group of Neuroscience, Department of Pediatrics, Faculty of Medicine and Nursing, UPV/EHU, Paseo Dr. Begiristain 105, 20014 San Sebastian, Spain

^e Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.

Figure S1. a) ¹H-NMR and b) ¹³C-NMR spectra of EDOT-PCL_{4k} macromonomers obtained by bulk ring-opening polymerization of ε -caprolactone using hydroxyl methyl EDOT as initiator and a mixture of MSA:DMAP as organocatalysts. c) MALDI-TOF of the PCL_{4k} indicating a monomodal mass profile distribution.

Table S1. Molecular weight, determined by SEC and ¹H-NMR, and polydispersity of the EDOT-PCL macromonomers synthesized. Synthetic conditions carried out in bulk at 130°C for 5 days and using MSA:DMAP as organocatalyst.

Macromonomer	M _n (g mol⁻¹) ^a	M _n (g mol ⁻¹) ^b	M _n (g mol⁻¹) ^c	PDI ^d
PCL	16 000	15 400	15 221	1.56
PCL _{8k}	7 500	8 200	8 941	1.93
PCL _{4k}	4 000	3 600	4 414	1.46

^a Theoretical number-average molecular weight

^b Experimental number-average molecular weight calculated with ¹H-NMR

^c Experimental number-average molecular weight calculated with SEC using PS standards

^{*d*} Dispersity = M_w / M_n calculated by SEC

Figure S2. UV-vis spectra of PCL macromonomer and the copolymers PEDOT-*g*-PCL_{8k} synthesized with different PEDOT compositions 16, 26 and 68 %wt.

Figure S3. a) TGA spectra of both polymers, PEDOT and PCL, and blends with different PEDOT percentages 25, 40, 50 and 60%, to obtain b) the calibration curve employed to determine the PEDOT percentage in the synthesized PEDOT-*g*-PCL copolymers. The dashed line shows the linear fitting expressed as: weight loss (%) = $0.39 + 4.29 \cdot PEDOT$ (%)

Figure S4. DSC of the PCL macromonomers synthesized with different number average molecular weights ($M_n = 4k$, 8k and 16k) and their corresponding graft copolymers a) PEDOT-*g*-PCL_{4k}, b) PEDOT-*g*-PCL_{16k}.

Figure S5. Storage modulus (G') and loss modulus (G'') at 65 °C of PCL macromonomers synthesized with different number average molecular weights ($M_n = 8k$ and 16k) and their corresponding graft copolymers a) PEDOT-*g*-PCL_{8k}, and b) PEDOT-*g*-PCL_{16k}.

Figure S6. Photographs and SEM images of different printed patterns to show the high-resolution and shapes. a) PCL macromonomers ($M_n = 8k$ and 16k), and their corresponding graft copolymers PEDOT-*g*-PCL_{8k} and PEDOT-*g*-PCL_{16k}. Note that yellow circles highlight the size of the crystals.

Figure S7. Cyclic voltammograms of 16% PEDOT-*g*-PCL_{8k} at different scan rates, as shown in the legend of the figure.

Figure S8. Water contact angle (WCA) of the printed patterns made of PCL_{16k} macromonomer and the graft copolymer 16% PEDOT-*g*-PCL_{8k}. Results show the mean ± standard deviation of three samples.