## -Supporting Information-

# Redox-sensitive ferrocene functionalised double cross-linked supramolecular hydrogels

Nikolai Liubimtsev<sup>a,b</sup>, Tom Kösterke<sup>a,b</sup>, Yunjiao Che<sup>a</sup>, Dietmar Appelhans<sup>a</sup>, Jens Gaitzsch<sup>a,\*</sup>, Brigitte Voit<sup>a,b,\*</sup>

- <sup>a</sup> Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- <sup>b</sup> Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Organic Chemistry of Polymers,

01069 Dresden, Germany

#### **Corresponding Authors**

\*gaitzsch@ipfdd.de \*voit@ipfdd.de

### 1. Table of Contents

| 1. | Table of Contents               | . 1 |
|----|---------------------------------|-----|
| 2. | Synthesis Data                  | . 2 |
| 3. | FTIR and Raman spectra          | . 6 |
| 4. | GPC Chromatograms               | . 7 |
| 5. | 2D NMR spectra in methanol      | . 8 |
| 6. | Optimisation of the redox cycle | . 9 |
| 7. | Mass and rheology data          | 10  |
|    |                                 |     |

#### 2. Synthesis Data



Figure S1: Overview on the polymerisation and polymer modifications of this work.

The following compiles the NMR spectra of additional substances that were not shown in the main text.







Figure S4. <sup>1</sup>H NMR spectra of CD-PMOXA (CD-30) recorded in DMSO-d<sub>6</sub>.



Figure S5. <sup>1</sup>H NMR spectra of ferrocene-PMOXA (Fer-30) recorded in DMSO-d<sub>6</sub>.





Figure S7. <sup>1</sup>H NMR spectra of azidomethylferrocene (Fer-N<sub>3</sub>) recorded in CDCl<sub>3</sub>.

#### 3. FTIR and Raman spectra

The FTIR and Raman spectra before and after the click reaction are shown below. The loss of the azide oscillation shows the successful course of the reaction.



**Figure S8.** (a) FTIR spectra of CD-PMOXA (red line) compared with 6-monoazido-6monodeoxy-β-cyclodextrin (black line), FTIR spectra of Fer-PMOXA (red line) compared with azidomethylferrocene (black line).



Figure S9. Raman spectra of azidomethylferrocene (Fer-N<sub>3</sub>).

#### 4. GPC Chromatograms

The GPC spectra of the different macromonomers are shown below. From these, the dispersities of the macromonomers were determined.



Figure S10. GPC chromatograms of Alk-30, Alk-37, CD-30, CD-37, Fer-30, Fer-37.

#### 5. 2D NMR spectra in methanol

Below are the 2D ROESY spectra of the host-guest complex. With this method, the linkage and the breakage of the  $\beta$ -CD/ferrocene host-guest complex could be demonstrated and proven.



**Figure S11.** 2D ROESY spectrum of 1:1 molar mixture of CD-PMOXA and Fer-PMOXA (5 mmol/L) in methanol- $d_4$  at 30 °C for 0.994 s.



**Figure S12.** 2D ROESY spectrum of 1:1 molar mixture of CD-PMOXA and Fer-PMOXA (8 mmol/L) after the addition of Ada-40 in methanol- $d_4$  at 30 °C for 0.994 s.

#### 6. Optimisation of the redox cycle

Before finding the optimal oxidation-reduction (i.e. swelling-deswelling) cycle, the hydrogels were already tested in a non-optimal setting (24 h cycle). This one showed a larger swelling and deswelling for the hydrogel with 1.0 mol% host-guest groups (GH-37c) compared to the hydrogel with 0.5 mol% host-guest groups (GH37a).



**Figure S13.** Oxidation and reduction for GH-37a (0.5 mol% host-guest) and GH-37c (1.0 mol% host-guest) hydrogels during a 24 h cycle that was not optimised. O1 = first oxidation, R1 = first reduction and so on.

In order to find the optimal time for the swelling and deswelling, the hydrogel with 1.0 mol% host-guest groups (GH-37c) was allowed to deswell to full equilibrium and studied using a kinetic measurement. Since full deswelling was reached after 5 hours, the whole cycle (swelling and deswelling) had to spread over 48 h in order keep a reasonable time frame.



**Figure S14.** Kinetic study for the deswelling of GH-37c in a 10mM sodium thiosulfate solution. Full deswelling was reached after 6 h.

#### 7. Mass and rheology data

The dynamic modulus is measured at 10 different frequencies from 1 rad/s up to 100 rad/s. The measurements points were 1; 1.58489; 2.51189; 3.98107; 6.30957; 10; 15.8489; 25.1189; 39.8107; 63.0957; 100 rad/s (Figure S15 for GH-37c). For the values noted in the tables below and hence also for Fig. 6 of the main paper, we took the average from the point 3 to 8, because the first and last two values deviated slightly from the flat region, both in the storage and in the loss modulus. The storage over loss values did not deviate greatly over the frequency sweep and can be seen on the graphic, where it belongs to the second y-axis (the one on the right).



**Figure S15.** Dynamic measurement of the loss and storage modulus (in Pa) as well as the loss factor, exemplary shown for GH-37c.

The numerical data for Figure 6 are comprised in the following tables:

Mass of hydrogels in mg (Fig. 6a):

| Cycle GH-37a GH-37c GH-30a H-PNiPAAm GH-35Me   Start 516 538 658 339 352   O1 543 573 724 342 358   R1 466 487 569 335 351   O2 548 578 731 343 362   R2 474 492 568 345 349   O3 563 596 781 340 356   R3 471 505 549 339 345 |       |        |        |        |           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|-----------|---------|
| Start516538658339352O1543573724342358R1466487569335351O2548578731343362R2474492568345349O3563596781340356R3471505549339345                                                                                                     | Cycle | GH-37a | GH-37c | GH-30a | H-PNiPAAm | GH-35Me |
| O1543573724342358R1466487569335351O2548578731343362R2474492568345349O3563596781340356R3471505549339345                                                                                                                         | Start | 516    | 538    | 658    | 339       | 352     |
| R1466487569335351O2548578731343362R2474492568345349O3563596781340356R3471505549339345                                                                                                                                          | 01    | 543    | 573    | 724    | 342       | 358     |
| O2548578731343362R2474492568345349O3563596781340356R3471505549339345                                                                                                                                                           | R1    | 466    | 487    | 569    | 335       | 351     |
| R2 474 492 568 345 349   O3 563 596 781 340 356   R3 471 505 549 339 345                                                                                                                                                       | 02    | 548    | 578    | 731    | 343       | 362     |
| O3 563 596 781 340 356   R3 471 505 549 339 345                                                                                                                                                                                | R2    | 474    | 492    | 568    | 345       | 349     |
| <b>R3</b> 471 505 549 339 345                                                                                                                                                                                                  | 03    | 563    | 596    | 781    | 340       | 356     |
|                                                                                                                                                                                                                                | R3    | 471    | 505    | 549    | 339       | 345     |
| <b>O4</b> 566 576 765 341 355                                                                                                                                                                                                  | 04    | 566    | 576    | 765    | 341       | 355     |
| <b>R4</b> 476 496 556 336 344                                                                                                                                                                                                  | R4    | 476    | 496    | 556    | 336       | 344     |
| <b>O5</b> 574 582 770 334 352                                                                                                                                                                                                  | 05    | 574    | 582    | 770    | 334       | 352     |
| <b>R5</b> 477 499 571 335 347                                                                                                                                                                                                  | R5    | 477    | 499    | 571    | 335       | 347     |
| Ad 591 606 792 338 359                                                                                                                                                                                                         | Ad    | 591    | 606    | 792    | 338       | 359     |

Storage modulus in Pa (Fig. 6b):

| Cycles | GH-37a | GH-37c | GH-30a | GH-35Me |
|--------|--------|--------|--------|---------|
| 01     | 1689   | 1447   | 563    | 5611    |
| R1     | 2168   | 1510   | 735    | 5654    |
| 02     | 1664   | 1399   | 527    | 5507    |
| R2     | 1925   | 1461   | 449    | 5635    |
| 03     | 1655   | 1419   | 515    | 5511    |
| R3     | 1848   | 1457   | 554    | 5568    |
| 04     | 1613   | 1424   | 503    | 5472    |
| R4     | 1854   | 1453   | 543    | 5572    |
| 05     | 1637   | 1395   | 422    | 5391    |
| R5     | 1873   | 1425   | 524    | 5646    |
| Ad     | 1818   | 1202   | 421    | 5336    |