Electronic Supplementary Information

Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene-*co*-norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene

Huan Gao,^a Shangtao Chen,^b Bin Du,^b Zhenyu Dai,^c Xu Lu,^c Kunyu Zhang,^c Li Pan,^{*,a} Yang Li,^{*,c} Yuesheng Li^{a,d}

^a Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

^b Synthetic Resin Laboratory, Petro China Petrochemical Research Institute, Beijing 102206, China

^c Advanced Materials Research Center, Petrochemical Research Institute, PetroChina
 Company Limited, Beijing 102206, China

^d Collaborative innovation center of Chemical Science & Engineering of Tianjin, Tianjin 300072, China

Contents

1.	Synthesis of <i>rac</i> -[CH ₂ (3- <i>tert</i> -butyl-1-indenyl) ₂]ZrCl ₂ S3
2.	Tables1-2. Fraction results of the multiblock copolymer
3.	Figure S1. Characterization of ligand and catalyst 2
4.	Figure S2. ¹³ C{ ¹ H} NMR spectra of E/NBE copolymer by single catalyst systemS5
5.	Figure S3-4. Molecular weight distribution curves of copolymers synthesized with
	different chain transfer agent
6.	Figure S5. ¹³ C{ ¹ H} NMR spectra of poly(ethylene- <i>co</i> -norbornene) copolymerS8
7.	Figure S6-7. GPC elute traces of copolymer obtained by two catalysts $Et_2ZnS8-9$
8.	Figure S8. ${}^{13}C{}^{1}H$ NMR spectra of the MTHF-soluble portion and the insoluble portion
	of poly(ethylene- <i>co</i> -norbornene) copolymer
9.	Figure S9-11. DSC curves of poly(ethylene-co-norbornene) copolymersS10-11
10.	Figure S12-15. GPC elute traces and molecular weight distributions by peak fitting of
	copolymerS11-13
11.	Figure S16-19. ¹³ C{ ¹ H} NMR spectra of poly(ethylene- <i>co</i> -norbornene) copolymers
	obtained under different conditions
12.	Figure S20. Loss modulus of copolymers obtained with variable $ZnEt_2$ /catalyst
	ratioS14
13.	Figure S21. ¹ H NMR spectra and expansions (between 4.4 and 5.7 ppm) of copolymer
	under high reaction temperature
14.	Figure S22. DMA of copolymers obtained with variable ZnEt ₂ /catalyst ratioS15
15.	Figure S23. Tensile properties of copolymers obtained with Cat.1 $ZnEt_2$ or
	(Cat.1+Cat.2)
	ZnEt ₂

1. Synthesis of *rac*-[CH₂(3-*tert*-butyl-1-indenyl)₂]ZrCl₂. To a 250 mL Schlenk tube, 3.46 g of bis(3-*tert*-butyl-1- indenyl)methane (98.9% GC, 9.6 mmol) was added in 60 mL of Et₂O. At 0 °C, 22.0 mmol of BuLi (2.5 M in hexane) was added dropwise over 6 min under stirring. The solution was then warmed to room temperature and stirred for 24 h. In another flask, 60 mL of toluene and 2.46 g of ZrCl₄ (10.6 mmol) were added and cooled to -20 °C, then the mixture was quickly added to the lithium salt suspension in Et₂O at -20 °C. The reaction mixture was kept at -20 and reacted for 1 h. Then it was stirred overnight at room temperature, and finally Et₂O was removed under reduced pressure. The resulting toluene suspension was filtered, and the filtrate was evaporated under reduced pressure to give 3.26 g of a red powder as crude product (yield: 65.7%). The crude product was washed with tetrahydrofuran and dried under vacuum to give (1.2 g of red violet powder) pure *meso*-Cat. **2** as the final product (yield: 24.2%).

Catalyst Package	Soluble polymer		Insoluble polymer	
-	g	%	g	wt%
Cat.(1+2)	0.17	42	0.23	58
Cat.(1+ 2)+5 Et ₂ Zn	0.16	40	0.24	60
Cat.(1+2)+10 Et ₂ Zn	0.12	30	0.28	70

Table S1 Fraction of representative copolymers obtained with different $Et_2Zn/catalyst$ ratiosby methyl-tetrahydrofuran

The copolymers (corresponding to Runs 3, 4, and 5 in Table 4) were refluxed with methyltetrahydrofuran (MTHF) at 85 ± 2 °C for 6 hours. The insoluble portion content gradually increased as Et₂Zn/catalyst ratio increasing.

	Fraction	Eluted . temperature(°C)	$Et_2Zn/Zr = 10$		
			Wt.%	\sum Wt.%	
	1	35	34.44	34.43	
	2	60	5.73	40.16	
	3	85	21.38	61.54	
	4	100	38.45	100	
	5	115	0	100	

 Table S2 Summary results of cross fractionation chromatography in 1,2,4-tricholorobenzene.

Fig. S1. The ¹H NMR spectra of ligand (left) and catalyst 2 (right).

Fig. S2 (a) ${}^{13}C{}^{1}H$ NMR spectrum of poly(ethylene-*co*-norbornene) copolymer synthesized by catalyst 1 (Run 1 in Table 1, NBE incorporation = 27 mol%), and (b) ${}^{13}C{}^{1}H$ NMR spectrum of copolymer synthesized by catalyst 2 (Run 11 in Table 1, negligible NBE incorporation was found).

Fig. S3 Molecular weight distribution curves of copolymers synthesized from ethylene and NBE copolymerization with variable CTA synthesized by (a) Cat.1 (Runs 1, 3, 5 and 7) and (b) Cat.2 (Runs 11, 13 and 17) in Table 1.

Fig. S4 Molecular weight distributions of copolymers synthesized from ethylene and NBE copolymerization with variable CTA by (a) Cat.1 (Runs 1 and 8) and (b) Cat.2 (Runs 11, 18, 19 and 20) in Table 1.

Fig. S5 ¹³C{¹H} NMR spectra of poly(ethylene-*co*-norbornene) copolymer (a) Run 1, (b) Run 5, (c) Run 6 and (d) Run 10 in Table 2.

Fig. S6 GPC eluting traces of copolymer obtained by two catalysts with 10 equivalents of Et_2Zn (Run 3 in Table 3).

Fig. S7 GPC elute traces of copolymer obtained by two catalysts with 10 equivalents of Et_2Zn (Run 6 in Table 3)

Fig. S8 ¹³C{¹H} NMR spectra of (a) MTHF-soluble portion (0.12 g, NBE: 13 mol%) and (b) insoluble portion (0.28 g, NBE: 2.2 mol%) of poly(ethylene-*co*-norbornene) copolymer prepared by catalysts **1** and **2** in the presence of 10 equivalents of Et_2Zn (Run 5 in Table 4).

Fig. S9 DSC (cooling and the second heating) curves of poly(ethylene-*co*-norbornene) copolymers prepared by (a) catalyst **1** in absence CTA (Run 1 in Table 1) and (b) catalyst **2** in absence CTA (Run 11 in Table 1).

Fig. S10 DSC curves of poly(ethylene-*co*-norbornene) copolymers prepared by (a) catalyst **1** in the presence of 20 equivalents ZnEt₂ (Run 10 in Table 1) and (b) catalyst **2** in the presence of 20 equivalents ZnEt₂ (Run 20 in Table 1).

Fig. S11 DSC curves of the MTHF-soluble (red) and insoluble portion (black) of the poly(ethylene-*co*-norbornene) copolymer prepared by catalysts 1 and 2 in the presence of 10 equivalents of $ZnEt_2$.

Fig. S12 (a) GPC eluting traces of copolymer (Run 3 in Table 4) and (b) its molecular weight distributions by peak fitting.

Fig. S13 (a) GPC eluting traces of copolymer (Run 5 in Table 4 and (b) its molecular weight distribution curve.

Fig. S14 Molecular weight distribution curves of polymers before (black curve, Run 5 in Table 4) and after MTHF fraction (red curve: MTFH insoluble; green curve: MTFH soluble portion).

Fig. S15 Molecular weight distribution curves of polymers prepared without (black curve, Run 3 in Table 4) and with 5 (red curve, Run 4 in Table 4), 10 equivalents of Et_2Zn (blue curve, Run 5 in Table 4).

Fig. S16 ¹³C{¹H} NMR spectrum of copolymer obtained by Cat. 1 (Run 1 in Table 4).

Fig. S17¹³C{¹H} NMR spectrum of copolymer prepared by two catalysts without Et_2Zn (Run 3 in Table 4).

Fig. S18 ¹³C{¹H} NMR spectrum of polyethylene/poly(ethylene-*co*-norbornene) multiblock copolymer prepared by two catalysts with 5 equivalents of Et_2Zn (Run 4 in Table 4).

Fig. S19 ¹³C{¹H} NMR spectrum of polyethylene/poly(ethylene-*co*-norbornene) multiblock copolymer prepared by two catalysts with 10 equivalents of Et_2Zn (Run 5 in Table 4)

Fig. S20 Loss modulus of copolymers obtained with variable $ZnEt_2$ / catalyst ratio (Runs 3-5 in Table 4) at 170 °C.

Fig. S21 ¹H NMR spectra and expansions (between 4.4 and 5.7 ppm) of copolymer under high reaction temperature (Run 4-5 Table 4).

Fig. S22 DMA of copolymers obtained with variable ZnEt₂/catalyst ratio (Table 4).

^aTensile strength. ^b Young's modulus. ^c Strain at break.

Fig. S23 Tensile properties of copolymers obtained with Cat.1 or (Cat.1+Cat.2) $ZnEt_2$ (Run 4 Table 2 and Run 8 Table 4).