Diphenyl Phosphate/Ethyl Diphenylphosphinite as an Efficient Organocatalytic System for Ring-opening Polymerization of ε -Caprolactone and δ -Valerolactone

Yanping Li,[†] Songyi Xu,[‡] Jun Ling,[‡] Ke Pan,[†] Yujian Liu,[†] Yougen Chen^{†*}

[†] Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong,

518060, China

[‡] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

CORRESPONDING AUTHOR FOOTNOTE

Tel & Fax: +86-75526943283.

E-mail: chenyg@szu.edu.cn (Y.-G. Chen)

Experimental Section

Materials. Dichloromethane $(CH_2Cl_2,$ ≥99.5%), toluene (>99.5%), methanol (MeOH, >99.5%) and ethyl acetate (≥99.5%) were purchased from Titan Chemical Co., Ltd (Shanghai, China). Triethylamine (>99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Ethyl diphenylphosphinite (EDPP, >93.0%) and benzoic acid (PhCO₂H, >99.0%) were purchased from TCI chemicals. δ -Valerolactone (δ -VL, \geq 98.5%) and diphenyl phosphate (DPP, ≥99.7%) were purchased from J&K Scientific Co., Ltd. (Beijing, China). L-Lactide (L-LA,99.0%) and trimethylene carbonate (TMC, 98%) were purchased from Rhawn reagent Co., Ltd. (Shanghai, China). *e*-Caprolactone (*e*-CL, 99%), bis(trifluoromethane) sulfonamide (HNTf₂, >97.0%), deuterated chloroform (CDCl₃, 99.8%), and calcium hydride (CaH_{2.95%}) were purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). CH₂Cl₂, ε -CL, δ -VL, and DMF were distilled from CaH₂ and degassed by three freeze-pump-thaw cycles under an argon atmosphere prior to use. Toluene was distilled over Na/benzophenone and degassed by three freeze-pump-thaw cycles under an argon atmosphere prior to use. L-LA was recrystallization in ethyl acetate and dried under vacuum before use. TMC was recrystallization in toluene at -20 °C before use. Other chemical were used as received.

Measurements. The polymerizations were conducted in a MIKROUNA stainless steel glove-box full of argon gas equipped with a gas purification system under a dry argon atmosphere (H₂O, O₂ <0.01 ppm). The moisture and oxygen contents in the glove box were monitored by an MB- MO-SE 1 and MB-OX-SE 1, respectively. The proton, carbon, and phosphorus nuclear magnetic resonance (¹H, ¹³C, and ³¹P NMR) spectra were recorded by a

Bruker AVANCE III 400 Hz NMR spectrometer with superconducting magnet, Bruker Biospin GmbH Rheinstetten, Germany. The ³¹P NMR spectra were determined using P(O*n*Bu)₃ as an internal standard (139.1 ppm) when there was no acid in the samples. The number-average molecular weights ($M_{n,SECS}$) and dispersities (M_w/M_nS) were determined by HLC-8320 GPC at 40 °C in THF (0.35 mL min⁻¹) equipped with a refractive index detector (+, 0.5 s) and two TSKgel Super Multipore HZ-M columns (4.6 mm I.D. × 15 cm × 2), to which 10 µL of sample is injected with the concentration of 0.2-0.3 wt% at once, calculated on the basis of a polystyrene calibration. Matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectra were collected on a Bruker UltraFLEX MALDI-ToF in reflector mode with potassium trifluoroacetate as the cationic agent and 2,5-dihydroxybenzoic acid (DHB) as the matrix.

Ring-opening polymerization of ε -caprolactone. A typical procedure for polymerization of ε -CL is described as follows: ε -CL (2.0 mL, 2.0 mol L⁻¹ in CH₂Cl₂), EDPP (160 µL, 0.5 mol L⁻¹ in CH₂Cl₂) and DPP (320 µL, 0.5 mol L⁻¹ in CH₂Cl₂) were added to a test tube in glove box. Aliquots were removed from the reaction mixture to determine the conversion based on ¹H NMR spectrum. After stirring for 32 h, the polymerization was quenched by adding a small amount of triethylamine to the polymerization solution. The polymer product was purified by precipitation against methanol three times to give PCL as a white solid. Yield, 336.6 mg (75%); Conv. = 94.5%, $M_{n,theo.} = 5,440$ g mol⁻¹, $M_{n,NMR} = 5,310$ g mol⁻¹, $M_{n,SEC} = 8,430$ g mol⁻¹, $M_w/M_n = 1.15$.

Derivation of polymerization rate equation

$$R_{\rm p} = -\frac{d[\mathsf{M}]}{dt} = k_p[\mathsf{M}^*][\mathsf{I}] \tag{1}$$

where $[M^*] = [activated \varepsilon-CL]$, [I] is the concentration of active center, and k_p is the polymerization rate constant. Namely,

$$\frac{dC}{dt} = \frac{k_p [\mathsf{M}^*][\mathsf{I}]}{[\mathsf{M}]_0} \tag{2}$$

C is the monomer conversion and $[M]_0$ is the initial monomer concentration. According to the proposed mechanism in Scheme S1(c), the following reactions can be known:

$$\varepsilon$$
-CL (M) + DPP \longrightarrow activated monomer (M*) (I)

$$EDPP + DPP \stackrel{K}{\longleftarrow} EDPP - DPP \qquad (II)$$
active dormant

EDPP is the true active center and its protonated state (EDPP-DPP) is the dormant species. Thus, we can know [I] = [EDPP]. As discussed above, DPP acts as a dual-role catalyst and is divided into two parts. One role is to protonate the phosphinite species to establish an equilibrium reaction (equilibrium constant = K), and the other is the residual DPP to activate ε -CL. Thus, [M^{*}] = [DPP] = [DPP]_0 - [EDPP-DPP] can be known. The following equations can be derived as:

$$[EDPP] + [EDPP - DPP] = [EDPP]_0$$
(3)

$$[DPP] + [EDPP - DPP] = [DPP]_0$$
(4)

$$[\mathsf{M}^*] = [\mathsf{DPP}] \tag{5}$$

$$K = \frac{[\text{EDPP}-\text{DPP}]}{[\text{EDPP}][\text{DPP}]} \tag{6}$$

eq. (7) can be obtained by combining (3)-(6),

$$K = \frac{[\text{EDPP}]_0 - [\text{EDPP}]}{[\text{EDPP}]_0 + [\text{EDPP}] - [\text{EDPP}]_0)}$$
(7)

According to eq. (7), [P] can be expressed by K as eq. (8),

$$[EDPP] = \sqrt{K[EDPP]_0 + (\frac{1+K([DPP]_0 - [EDPP]_0)}{2})^2} - \frac{1+K([DPP]_0 - [EDPP]_0)}{2}$$
(8)

According to *eq*. (2), (5), (6) and [I] = [EDPP],

$$\frac{dC}{dt} = \frac{k_p [M^*][I]}{[M]_0} = \frac{k_p}{[M]_0} [DPP] [EDPP] = \frac{k_p}{[M]_0} \frac{[EDPP]_0 - [EDPP]}{K}$$
(9)

Thus, the final equation can be expressed as eq. (10) after (8) is input to (9),

$$\frac{dC}{dt} = \frac{k_p}{[M]_0} \frac{K[EDPP]_0 - \{\sqrt{K[EDPP]_0 + \left(\frac{1+K([DPP]_0 - [EDPP]_0)}{2}\right)^2 - \frac{1+K([DPP]_0 - [EDPP]_0)}{2}}\}}{K^2}$$
(10)

Namely,

$$C = \frac{k_p}{[M]_0} \frac{K[EDPP]_0 - \{\sqrt{K[EDPP]_0 + \left(\frac{1 + K([DPP]_0 - [EDPP]_0)}{2}\right)^2 - \frac{1 + K([DPP]_0 - [EDPP]_0)}{2}}\}}{K^2} t$$
(11)

Table S1. Ring-opening polymerization (ROP) of ε -caprolactone (ε -CL) using an organocatalytic system composed of ethyl diphenylphosphinite (EDPP) and an organic acid in CH₂Cl₂^{*a*}

run	Organic acid (C)	[C] ₀ /[EDPP] ₀	Conv. ^b	$M_{n,theo.}$ ^c $M_{n,SEC}$ ^d		M/M d	
			(%)	(g mol ⁻¹)	$(g mol^{-1})$	1/1 _W /1/1/n "	
S 1	PhCO ₂ H	1:1	0		n.d. ^{<i>h</i>}	n.d.	
S2	PhCO ₂ H	2:1	0		n.d.	n.d.	
S 3	HNTf ₂	1:1	0		n.d.	n.d.	
S4	$HNTf_2$	2:1	58.8	6,760	16,100	1.40	
S5	DPP	1:1	39.9	4,600	5,840	1.17	
S 6	DPP	2:1	80.3	9,210	11,800	1.15	
S7 ^e	DPP	2:1	99.2	11,400	19,300	1.34	
S 8	none	0:1	0		n.d.	n.d.	
S9 ^{<i>f</i>}	none	0:1	0		n.d.	n.d.	
S10 ^g	DPP	2:0	62.1		54,400	1.15	

^{*a*} [ε -CL]₀, 2.0 mol L⁻¹; [ε -CL]₀/[EDPP]₀ = 100, time = 24 h; temperature, r.t. ^{*b*} Determined by ¹H NMR in CDCl₃. ^{*c*} Calculated from ([ε -CL]₀/[EDPP]₀) × Conv. × (M.W. of ε -CL) + (M.W. of EDPP residue).^{*d*} Determined by SEC equipped with an RI detector using THF as eluent at 40 °C and the flow rate of 0.35 mL min⁻¹. ^{*e*} Polymerization was carried out in toluene. ^{*f*} The monomer was L-lactide (LLA). ^{*g*} [ε -CL]₀/[DPP]₀ = 100:2. ^{*h*} Not determined.

run	Monomer (M)	Time	Conv. ^{<i>b</i>} (%)	$M_{n,\text{theo.}}$ ^c (g mol ⁻¹)	$M_{n,SEC} d(g \text{ mol}^{-1})$	$M_{ m w}/M_{ m n}$ d
S6	E-CL	24	80.3	9,210	11,800	1.15
S11	δ-VL	4.5	85.1	8,600	11,600	1.31
S12	ТМС	5.5	5.0	560	n.d.	n.d.
S13	LLA	3	0	n.d. ^{<i>e</i>}	n.d.	n.d.

Table S2. ROP of cyclic esters using EDPP/DPP as an organocatalytic system in CH₂Cl₂ ^a

^{*a*} [M]₀, 2.0 mol L⁻¹; [M]₀/[DPP]₀/[EDPP]₀ = 100/2/1; temperature, r.t. ^{*b*} Determined by ¹H NMR in CDCl₃. ^{*c*} Calculated from ([ε -CL]₀/[EDPP]₀) × Conv. × (M.W. of ε -CL) + (M.W. of EDPP residue). ^{*d*} Determined by SEC equipped with an RI detector using THF as eluent at 40 °C and the flow rate of 0.35 mL min⁻¹. ^{*e*} Not determined.

Table S3. Block copolymerization of δ -VL and ε -CL using EDPP/DPP as an organocatalytic system in CH₂Cl₂ by sequential monomer addition method ^{*a*}

Polymer	$[\delta - VL + \varepsilon - CL]_0$	time	Conv. $(\delta$ -VL) ^b	Conv. $(\mathcal{E}$ -CL) ^b	$M_{n,,theo.}$ ^c	$M_{n,NMR}$ ^b	$M_{n,SEC}^{d}$	$M_{\rm w}/M_{\rm n}{}^d$	
	/[EDPP]0	(h)	(%)	(%)	(gmol ⁻¹)	(gmol ⁻¹)	(gmol ⁻¹)		
PVL-b-poly	(50+0)/1	3	78.0	0	3,950	4,720	5,960	1.25	
(VL-co-CL)	(0+50)/1	32	97.3	82.2	9,610	8,940	17,100	1.21	
PCL-b-poly	(0+50)/1	32	0	84.7	4,880	5,380	7,200	1.14	
(CL-co-VL)	(50+0)/1	5	71.5	88.0	8,650	8,130	12,400	1.25	

^{*a*} [ε -CL]₀, 2.0 mol L⁻¹; [EDPP]₀, 0.5 mol L⁻¹; [DPP]₀, 0.5 mol L⁻¹; temperature, r.t. ^{*b*} Determined by ¹H NMR in CDCl₃. ^{*c*} Calculated from ([ε -CL]₀/[EDPP]₀) × Conv. × (M.W. of ε -CL) + (M.W. of EDPP residue). ^{*d*} Determined by SEC equipped with an RI detector using THF as eluent at 40 °C and the flow rate of 0.35 mL min⁻¹. ^{*e*} not determined.

Figure S1. SEC traces of (a) run 4, (b) run 5, (c) run 6, (d) run 7, and run 9 determined by a SEC equipped with an RI detector using THF as eluent at 40 °C and the flow rate of 0.35 mL min⁻¹.

Figure S2. ¹H NMR spectra of (a) &-CL, (b) EDPP, (c) HNTf₂ (d) &-CL + HNTf₂ (molar ratio, 1:1, the same for the following mixtures), (e) EDPP + HNTf₂, and (f) &-CL + EDPP + HNTf₂ determined in CDCl₃.

Figure S3. ¹H NMR spectra of (A): (a) ε -CL, (b) EDPP, (c) PhCO₂H, (d) ε -CL + PhCO₂H (molar ratio, 1:1, the same for the following mixtures), (e) PhCO₂H + EDPP, and (f) ε -CL + PhCO₂H + EDPP determined in CDCl₃.

Figure S4. ¹H NMR spectrum of a PCL (theoretically 25-mer) purified after reprecipitation from hexane for three times and then preparative SEC in CH₂Cl₂, determined in CDCl₃.

Figure S5. (a) Conv. vs time and $\ln[1/(1-\text{Conv.})]$ vs time plots, and (b) the dependence of $M_{n,\text{SEC}}$ and M_w/M_n on Conv. of the ROP of δ -VL carried out at r.t. in CH₂Cl₂ under various $[\delta$ -VL]₀/[EDPP]₀/[DPP]₀ ratios of 100/2/1 (\circ) and 100/1/1 (\circ) ([δ -VL]₀ = 2.0 mol L⁻¹).

Figure S6. SEC traces of copolymerization of δ -VL and ε -CL by sequential monomer addition method: (a) PVL in first polymerization (red line) and PVL-*b*-poly(VL-*co*-CL) (blue line) in the following copolymerization and (b) PCL in first polymerization (red line) and PCL-*b*-poly(CL-*co*-VL) (blue line) in the following copolymerization determined by a SEC equipped with an RI detector using THF as eluent at 40 °C and the flow rate of 0.35 mL min⁻¹.