Supporting Information: A General Model for the Ideal Chain Length Distributions of Polymers Made with Reversible Deactivation

Madison M. Kearns^{a,†}, Colleen N. Morley^{a,†}, Kostas Parkatzidis,^b Richard Whitfield,^b Alvaro D.

Sponza,^c Progyateg Chakma,^a Nethmi De Alwis Watuthanthrige^a, Melanie Chiu^c, Athina

Anastasaki^b, and Dominik Konkolewicz^{a,*}

a Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH,

45056.

b Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland

c Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA

- † Authors contributed Equally
- * Correspondence: <u>d.konkolewicz@miamiOH.edu</u>

Experimental

Materials

All materials were purchased from commercial sources and used as received unless otherwise specified.

Synthesis of phenyl vinyl ketone (PVK) was adopted from a known method and used immediately to prevent degradation.¹ The synthesis of chain transfer agent 2-[[(dodecylthio)thioxomethyl]thio]-

2-methylpopanoic acid, or (isobutyric acid)yl dodecyl trithiocarbonate (iBADTC) was carried out using a known synthesis procedure in literature.²

Synthesis of PPVK-b-PBA block polymer

In a 25 mL round bottom flask equipped with a magnetic stirrer bar, azobisisobutyronitrile (AIBN) (2.49 x10⁻³ g, 1.51 x10⁻⁵ mol), iBADTC (5.51 x10⁻² g, 1.51 x10⁻⁴ mol), PVK (1.00 g, 7.57 x10⁻³ mol) and 1.06 g of dioxane were added. The reaction mixture was capped with a rubber septum and deoxygenated with nitrogen for 20 minutes and then stirred overnight at 65 °C. The monomer conversion (>98%) was confirmed by ¹H-NMR, giving the PPVK homopolymer.

To the previously prepared PPVK polymer mixture, azobisisobutyronitrile (AIBN) (2.49 x10⁻³ g, 1.51×10^{-5} mol), BA (9.70 x10⁻¹ g, 7.57 x10⁻³ mol) and 1.00 g of dioxane was added. The mixture was mixed, and deoxygenated with nitrogen for 20 minutes and then stirred overnight at 65 °C. The monomer conversion (>98%) was confirmed by ¹H-NMR.

NMR

¹H were obtained on a Bruker AV500 Ultra Shield (500 MHz) or Bruker Avance NEO 400i nanobay (400 MHz) spectrometer.

Size Exclusion Chromatography (SEC)

Size exclusion chromatography of the PPVK homopolymer and PPVK-PBA block copolymer was performed using an Agilent 1260 gel permeation chromatography system equipped with an isocratic pump, an autosampler, a guard and 2x PL Gel Mixed B columns, and a refractive index detector. The eluent was tetrahydrofuran running at 1mL/min at 30 °C. The system was calibrated with poly(methyl methacrylate) standards in the range of 617,000 to 1,010.

Supporting Data

Table S1. Degree of polymerization and dispersity for systems with $k^* = 0.1$ and varied μ_{decap} . In all cases $[M]_0 = 4 \text{ M}$, [P-X] = [D] = 0.04 M.

$\mu_{ m decap}$	DP _n	Dispersity
1	15.881	2.2078
2	25.9576	1.611
3	33.8272	1.4163
5	46.3431	1.2628
10	67.8898	1.1399
20	88.8193	1.0808

k*	DP _n	Dispersity
0.1	46.3431	1.2628
0.2	71.4329	1.2488
0.4	92.6084	1.3106
0.8	100.0926	1.6775
0.99	100.3238	1.9838

Table S2. Degree of polymerization and dispersity for systems with $\mu_{decap} = 5$ and varied k*. In all cases $[M]_0 = 4$ M, [P-X] = [D] = 0.04 M.

Table S3. Degree of polymerization and dispersity for systems with constant product of k* and μ_{decap} . In all cases $[M]_0 = 4 \text{ M}$, [P-X] = [D] = 0.04 M.

k*	μ_{decap}	DP _n	Dispersity
0.1	10	67.8898	1.1399
0.2	5	71.4329	1.2488
0.33	3	74.4598	1.4067
0.5	2	75.8346	1.6649
0.99	1	64.1999	3.0826

Comparison of Models for Dispersity

The predictions of the developed model, labeled model below are compared to those developed by Goto et al.³ using the equation below:

$$D = 1 + \frac{1}{DP_n} + \left(\frac{2 - conversion}{conversion}\right) \left(k^* \frac{[P - X]}{[D]}\right)$$
(S1)

Figure S1: Comparison of dispersities (^Đ) predicted by the developed model and the model outlined by Goto et al.³ a) A RAFT system with $[M]_0 = 5.5$ M, [P-X]=[D] determined by the DP and the product of $k^* \times \mu_{decap}$ of 5. b) An ATRP system with $[M]_0 = 5.5$ M, $k^* = 1.7 \times 10^{-4}$ or 5×10^{-4} , [P-X] determined by the DP and the product of $k^* \mu_{decap} / [D]$ of ca. 100 for DP 100 systems and 300 for DP 300 systems. c) Cationic system with $[M]_0 = 0.5$ M, [D]=1 and $[P-X] \times \mu_{decap} = 0.05$ for $k^* = 80$ and $[P-X] \times \mu_{decap} = 0.165$ for $k^* = 30$.

Convolution of two distributions

To predict the outcome of convolving two distributions, where a fraction of the chain length comes from a CTA that gives a narrow distribution and a fraction comes from a CTA that gives a broad distribution, the overall chain length is split by the fraction of CTA loading. For instance if a loading of f of a narrow distribution forming CTA is used with a 1-f fraction of the broad

distribution forming CTA was used, then the simulated traces would assume that of the total chain length, a fraction *f* of the final chain length came from the narrow distribution forming CTA and 1-*f* came from the broad distribution forming CTA. In this way the final distribution at chain length n can be found by the convolution below and also in eq 29 of the main text: $P_{n} \left(n \right) |_{L^{\infty}} = \frac{k^* k^* [M]_{\infty} [M]_{\infty} [P - X]_{\infty} [D]_{\infty} [D]$

$$P_{con}(n \mid \mu_{decap,1}, \mu_{decap,2}, \kappa_{1}, \kappa_{2}, [M]_{0,1}, [M]_{0,2}, [P-X]_{1}, [P-X]_{2}, [D]_{1}, [D]_{2}) =$$

$$\sum_{i=1}^{P} P_{1}(n-i+1|\mu_{decap,1},k_{1}^{*},[M]_{0,1},[P-X]_{1},[D]_{1})P_{2}(i|\mu_{decap,2},k_{2}^{*},[M]_{0,2},[P-X]_{2},[D]_{2})$$
(S2)

п

Figure S2: Comparison of experiment, fitted model and convolved polymers. In the convolution one was simulated with [M]:[P-X]:[D]= 1.4:0.02:0.02 using k*=0.128 & μ_{decap} = 14.7272 to match the fraction of 0.35 CTA giving a narrow distribution and the second polymer was

simulated as [M]:[P-X]:[D]= 2.6:0.02:0.02 using k*=0.726 & μ_{decap} = 3.2031 to match the fraction of 0.65 CTA giving a broad distribution.

Figure S3: Effect of μ_{decap} on PMMA RAFT polymer of medium dispersity.

Figure S4. ATRP polymer simulated under: [M]: [P-X]:[D]=5.5: 3.667×10^{-2} : 1.482×10^{-5} , with $k^*=0.0004$ and $\mu_{decap}=3.6$.

Table 54: Parameters used to model complex polymers such as blended of block copolymers.								
System	Label	[M]:[P-X]:[D]	k*	$\mu_{ m decap}$	DP _{n-Ex}	\mathbf{D}_{Ex}	DP _{n-Th}	${\rm D}_{\rm Th}$
ATRP Blended	Narrow	250:1:0.02	0.0015	13.7	175	1.09	171	1.10
	Broad	200:1:0.0005	0.00038	2.0	167	1.84	169	1.89
ATRP	PMMA Block	300:1:0.03	0.0011	21	150	1.10	162	1.07
PMMA-b-EA	PEA Block	300:1:0.03	0.0019	9	N/A ^a	N/A ^a	142	1.16
PhotoRAFT	PPVK block	50:1:1	0.22	9.9	45.6	1.16	42.9	1.17
PPVK-b-BA	PBA block	50:1:1	0.15	25	N/A ^a	N/A ^a	50	1.10
PET-RAFT	PMMA Block 1	100:1:1	0.44	10	103	1.37	100	1.29
PMMA-b-MMA	PMMA Block 2	400.1.1	0 5934	1.92	N/A ^a	N/A ^a	113	38

Table S4: Parameters used to model complex polymers such as blended or block copolymers

References:

- 1 S. Chanthamath, S. Takaki, K. Shibatomi, S. Iwasa, *Angew. Chem. Int. Ed.* 2013, **52**, 5818.
- 2 S. Harrisson, K. L. Wooley, *Chem. Commun.* 2005, 3259.
- 3 A. Goto, T. Fukuda, *Prog. Polym. Sci.* 2004, **29**, 329.