Supporting Information: A General Model
 for the Ideal Chain Length Distributions of

Polymers Made with Reversible Deactivation

Madison M. Kearns ${ }^{\mathrm{a}, \dagger}$, Colleen N. Morley ${ }^{\mathrm{a}, \dagger}$, Kostas Parkatzidis, ${ }^{\mathrm{b}}$ Richard Whitfield, ${ }^{\mathrm{b}}$ Alvaro D.
Sponza, ${ }^{\text {c }}$ Progyateg Chakma, ${ }^{\text {a }}$ Nethmi De Alwis Watuthanthrige ${ }^{\text {a }}$, Melanie Chiu ${ }^{\mathrm{c}}$, Athina
Anastasaki ${ }^{\text {b }}$, and Dominik Konkolewicz ${ }^{\text {a, }}{ }^{*}$
a Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056.
b Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-PrelogWeg 5, 8093 Zürich, Switzerland
c Stony Brook University, Department of Chemistry, Stony Brook, NY, 11794 USA
\dagger Authors contributed Equally
* Correspondence: d.konkolewicz@miamiOH.edu

Experimental

Materials

All materials were purchased from commercial sources and used as received unless otherwise specified.
Synthesis of phenyl vinyl ketone (PVK) was adopted from a known method and used immediately to prevent degradation. ${ }^{1}$ The synthesis of chain transfer agent 2-[[(dodecylthio)thioxomethyl]thio]-

2-methylpopanoic acid, or (isobutyric acid)yl dodecyl trithiocarbonate (iBADTC) was carried out using a known synthesis procedure in literature. ${ }^{2}$

Synthesis of PPVK-b-PBA block polymer

In a 25 mL round bottom flask equipped with a magnetic stirrer bar, azobisisobutyronitrile (AIBN) $\left(2.49 \times 10^{-3} \mathrm{~g}, 1.51 \times 10^{-5} \mathrm{~mol}\right)$, iBADTC ($5.51 \times 10^{-2} \mathrm{~g}, 1.51 \times 10^{-4} \mathrm{~mol}$), PVK ($1.00 \mathrm{~g}, 7.57 \times 10^{-3}$ mol) and 1.06 g of dioxane were added. The reaction mixture was capped with a rubber septum and deoxygenated with nitrogen for 20 minutes and then stirred overnight at $65^{\circ} \mathrm{C}$. The monomer conversion ($>98 \%$) was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, giving the PPVK homopolymer.

To the previously prepared PPVK polymer mixture, azobisisobutyronitrile (AIBN) ($2.49 \times 10^{-3} \mathrm{~g}$, $\left.1.51 \times 10^{-5} \mathrm{~mol}\right)$, BA $\left(9.70 \times 10^{-1} \mathrm{~g}, 7.57 \times 10^{-3} \mathrm{~mol}\right)$ and 1.00 g of dioxane was added. The mixture was mixed, and deoxygenated with nitrogen for 20 minutes and then stirred overnight at $65^{\circ} \mathrm{C}$. The monomer conversion ($>98 \%$) was confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

NMR

${ }^{1} \mathrm{H}$ were obtained on a Bruker AV500 Ultra Shield (500 MHz) or Bruker Avance NEO 400i nanobay (400 MHz) spectrometer.

Size Exclusion Chromatography (SEC)

Size exclusion chromatography of the PPVK homopolymer and PPVK-PBA block copolymer was performed using an Agilent 1260 gel permeation chromatography system equipped with an isocratic pump, an autosampler, a guard and 2x PL Gel Mixed B columns, and a refractive index detector. The eluent was tetrahydrofuran running at $1 \mathrm{~mL} / \mathrm{min}$ at $30^{\circ} \mathrm{C}$. The system was calibrated with poly(methyl methacrylate) standards in the range of 617,000 to 1,010 .

Supporting Data

Table S1. Degree of polymerization and dispersity for systems with $\mathrm{k}^{*}=0.1$ and varied $\mu_{\text {decap }}$. In all cases $[\mathrm{M}]_{0}=4 \mathrm{M},[\mathrm{P}-\mathrm{X}]=[\mathrm{D}]=0.04 \mathrm{M}$.

$\mu_{\text {decap }}$	DP_{n}	Dispersity
1	15.881	2.2078
2	25.9576	1.611
3	33.8272	1.4163
5	46.3431	1.2628
10	67.8898	1.1399
20	88.8193	1.0808

Table S2. Degree of polymerization and dispersity for systems with $\mu_{\text {decap }}=5$ and varied k^{*}. In all cases $[\mathrm{M}]_{0}=4 \mathrm{M},[\mathrm{P}-\mathrm{X}]=[\mathrm{D}]=0.04 \mathrm{M}$.

k^{*}	DP_{n}	Dispersity
0.1	46.3431	1.2628
0.2	71.4329	1.2488
0.4	92.6084	1.3106
0.8	100.0926	1.6775
0.99	100.3238	1.9838

Table S3. Degree of polymerization and dispersity for systems with constant product of k^{*} and $\mu_{\text {decap. }}$. In all cases $[\mathrm{M}]_{0}=4 \mathrm{M},[\mathrm{P}-\mathrm{X}]=[\mathrm{D}]=0.04 \mathrm{M}$.

k^{*}	$\mu_{\text {decap }}$	DP_{n}	Dispersity
0.1	10	67.8898	1.1399
0.2	5	71.4329	1.2488
0.33	3	74.4598	1.4067
0.5	2	75.8346	1.6649
0.99	1	64.1999	3.0826

Comparison of Models for Dispersity

The predictions of the developed model, labeled model below are compared to those developed by Goto et al. ${ }^{3}$ using the equation below:

$$
\begin{equation*}
\mathrm{Đ}=1+\frac{1}{D P_{n}}+\left(\frac{2-\text { conversion }}{\text { conversion }}\right)\left(k^{*} \frac{[P-X]}{[D]}\right) \tag{S1}
\end{equation*}
$$

Figure S1: Comparison of dispersities $\left({ }^{\boxplus}\right)$ predicted by the developed model and the model outlined by Goto et al. ${ }^{3}$ a) A RAFT system with $[\mathrm{M}]_{0}=5.5 \mathrm{M},[\mathrm{P}-\mathrm{X}]=[\mathrm{D}]$ determined by the DP and the product of $k^{*} \times \mu_{\text {decap }}$ of 5. b) An ATRP system with $[\mathrm{M}]_{0}=5.5 \mathrm{M}, k^{*}=1.7 \times 10^{-4}$ or $5 \times 10^{-4},[\mathrm{P}-\mathrm{X}]$ determined by the DP and the product of $k^{*} \mu_{\text {decap }} /[\mathrm{D}]$ of ca. 100 for DP 100 systems and 300 for DP 300 systems. c) Cationic system with $[\mathrm{M}]_{0}=0.5 \mathrm{M},[\mathrm{D}]=1$ and $[\mathrm{P}-\mathrm{X}] \times$ $\mu_{\text {decap }}=0.05$ for $k^{*}=80$ and $[\mathrm{P}-\mathrm{X}] \times \mu_{\text {decap }}=0.165$ for $\mathrm{k}^{*}=30$.

Convolution of two distributions

To predict the outcome of convolving two distributions, where a fraction of the chain length comes from a CTA that gives a narrow distribution and a fraction comes from a CTA that gives a broad distribution, the overall chain length is split by the fraction of CTA loading. For instance if a loading of f of a narrow distribution forming CTA is used with a 1- f fraction of the broad
distribution forming CTA was used, then the simulated traces would assume that of the total chain length, a fraction f of the final chain length came from the narrow distribution forming CTA and $1-f$ came from the broad distribution forming CTA. In this way the final distribution at chain length n can be found by the convolution below and also in eq 29 of the main text:
$P_{\text {con }}\left(n \mu_{\text {decap }, 1}, \mu_{\text {decap }, 2}, k_{1}^{*}, k_{2}^{*},[M]_{0,1},[M]_{0,2},[P-X]_{1},[P-X]_{2},[D]_{1},[D]_{2}\right)=$
$\sum_{i=1}^{n} P_{1}\left(n-i+1 \mid \mu_{\text {decap }, 1}, k_{1}^{*},[M]_{0,1},[P-X]_{1},[D]_{1}\right) P_{2}\left(i \mid \mu_{\text {decap }, 2}, k_{2}^{*},[M]_{0,2},[P-X]_{2},[D]_{2}\right)$

Figure S2: Comparison of experiment, fitted model and convolved polymers. In the convolution one was simulated with $[\mathrm{M}]:[\mathrm{P}-\mathrm{X}]:[\mathrm{D}]=1.4: 0.02: 0.02$ using $\mathrm{k}^{*}=0.128 \& \mu_{\text {decap }}=14.7272$ to match the fraction of 0.35 CTA giving a narrow distribution and the second polymer was
simulated as $[\mathrm{M}]:[\mathrm{P}-\mathrm{X}]:[\mathrm{D}]=2.6: 0.02: 0.02$ using $\mathrm{k}^{*}=0.726 \& \mu_{\text {decap }}=3.2031$ to match the fraction of 0.65 CTA giving a broad distribution.

Figure S3: Effect of $\mu_{\text {decap }}$ on PMMA RAFT polymer of medium dispersity.

Figure S4. ATRP polymer simulated under: $[\mathrm{M}]:[\mathrm{P}-\mathrm{X}]:[\mathrm{D}]=5.5: 3.667 \times 10^{-2}: 1.482 \times 10^{-5}$, with $k^{*}=0.0004$ and $\mu_{\text {decap }}=3.6$.

Table S4: Parameters used to model complex polymers such as blended or block copolymers.

System	Label	$[\mathrm{M}]:[\mathrm{P}-\mathrm{X}]:[\mathrm{D}]$	k^{*}	$\mu_{\text {decap }}$	$\mathrm{DP}_{\mathrm{n} \text {-Ex }}$	$\mathrm{Đ}_{\mathrm{Ex}}$	$\mathrm{DP}_{\mathrm{n}-\mathrm{Th}}$	$\mathrm{Đ}_{\mathrm{Th}}$
ATRP Blended	Narrow	$250: 1: 0.02$	0.0015	13.7	175	1.09	17	1.10
	Broad	$200: 1: 0.0005$	0.00038	2.0	167	1.84	169	1.89
ATRP	PMMA Block	$300: 1: 0.03$	0.0011	21	150	1.10	162	1.07
PMMA-b-EA	PEA Block	$300: 1: 0.03$	0.0019	9	$\mathrm{~N}^{\mathrm{a}}$	$\mathrm{A}^{\mathrm{N}} / \mathrm{A}^{\mathrm{a}}$	142	1.16
PhotoRAFT	PPVK block	$50: 1: 1$	0.22	9.9	45.6	1.16	42.9	1.17
PPVK-b-BA	PBA block	$50: 1: 1$	0.15	25	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$	$\mathrm{N} / \mathrm{A}^{\mathrm{a}}$	50	1.10
PET-RAFT	PMMA Block 1	$100: 1: 1$	0.44	10	103	1.37	100	1.29
PMMA-b-MMA	PMMA Block 2	$400: 1: 1$	0.5934	1.92	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$	$\mathrm{N} / \mathrm{A}^{\mathrm{a}}$	113	3.8

References:

1 S. Chanthamath, S. Takaki, K. Shibatomi, S. Iwasa, Angew. Chem. Int. Ed. 2013, 52, 5818.

2 S. Harrisson, K. L. Wooley, Chem. Commun. 2005, 3259.
3 A. Goto, T. Fukuda, Prog. Polym. Sci. 2004, 29, 329.

