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Experimental
Materials
All materials were purchased from commercial sources and used as received unless otherwise 
specified.
Synthesis of phenyl vinyl ketone (PVK) was adopted from a known method and used immediately 
to prevent degradation.1 The synthesis of chain transfer agent 2-[[(dodecylthio)thioxomethyl]thio]-
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2-methylpopanoic acid, or (isobutyric acid)yl  dodecyl trithiocarbonate (iBADTC) was carried out 
using a known synthesis procedure in literature.2

Synthesis of PPVK-b-PBA block polymer

In a 25 mL round bottom flask equipped with a magnetic stirrer bar, azobisisobutyronitrile (AIBN) 
(2.49 x10-3 g, 1.51 x10-5 mol), iBADTC (5.51 x10-2 g, 1.51 x10-4 mol), PVK (1.00 g, 7.57 x10-3 
mol) and 1.06 g of dioxane were added. The reaction mixture was capped with a rubber septum 
and deoxygenated with nitrogen for 20 minutes and then stirred overnight at 65 °C. The monomer 
conversion (>98%) was confirmed by 1H-NMR, giving the PPVK homopolymer.

To the previously prepared PPVK polymer mixture, azobisisobutyronitrile (AIBN) (2.49 x10-3 g, 
1.51 x10-5 mol), BA (9.70 x10-1 g, 7.57 x10-3 mol) and 1.00 g of dioxane was added. The mixture 
was mixed, and deoxygenated with nitrogen for 20 minutes and then stirred overnight at 65 °C. 
The monomer conversion (>98%) was confirmed by 1H-NMR.

NMR
1H were obtained on a Bruker AV500 Ultra Shield (500 MHz) or Bruker Avance NEO 400i 
nanobay (400 MHz) spectrometer.
Size Exclusion Chromatography (SEC)
Size exclusion chromatography of the PPVK homopolymer and PPVK-PBA block copolymer was 
performed using an Agilent 1260 gel permeation chromatography system equipped with an 
isocratic pump, an autosampler, a guard and 2x PL Gel Mixed B columns, and a refractive index 
detector. The eluent was tetrahydrofuran running at 1mL/min at 30 °C. The system was calibrated 
with poly(methyl methacrylate) standards in the range of 617,000 to 1,010.

Supporting Data
Table S1. Degree of polymerization and dispersity for systems with k* = 0.1 and varied decap. In 𝜇
all cases [M]0 = 4 M, [P-X] = [D] = 0.04 M.

decap𝜇 DPn Dispersity

1 15.881 2.2078

2 25.9576 1.611

3 33.8272 1.4163

5 46.3431 1.2628

10 67.8898 1.1399

20 88.8193 1.0808



Table S2. Degree of polymerization and dispersity for systems with decap = 5 and varied k*. In 𝜇
all cases [M]0 = 4 M, [P-X] = [D] = 0.04 M.
k* DPn Dispersity

0.1 46.3431 1.2628

0.2 71.4329 1.2488

0.4 92.6084 1.3106

0.8 100.0926 1.6775

0.99 100.3238 1.9838

Table S3. Degree of polymerization and dispersity for systems with constant product of k* and 
decap. In all cases [M]0 = 4 M, [P-X] = [D] = 0.04 M.𝜇

k* decap𝜇 DPn Dispersity

0.1 10 67.8898 1.1399

0.2 5 71.4329 1.2488

0.33 3 74.4598 1.4067

0.5 2 75.8346 1.6649

0.99 1 64.1999 3.0826

Comparison of Models for Dispersity

The predictions of the developed model, labeled model below are compared to those developed 
by Goto et al.3 using the equation below:
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Figure S1: Comparison of dispersities ( ) predicted by the developed model and the model Đ
outlined by Goto et al.3 a) A RAFT system with [M]0 = 5.5 M, [P-X]=[D] determined by the DP 
and the product of k*  decap of 5. b) An ATRP system with [M]0 = 5.5 M, k* = 1.710-4 or 
510-4, [P-X] determined by the DP and the product of k* decap / [D] of ca. 100 for DP 100 
systems and 300 for DP 300 systems. c) Cationic system with [M]0 = 0.5 M, [D]=1 and [P-X]  
decap = 0.05 for k* = 80 and [P-X]  decap = 0.165 for k* = 30.

Convolution of two distributions

To predict the outcome of convolving two distributions, where a fraction of the chain length 
comes from a CTA that gives a narrow distribution and a fraction comes from a CTA that gives a 
broad distribution, the overall chain length is split by the fraction of CTA loading. For instance if 
a loading of f of a narrow distribution forming CTA is used with a 1-f fraction of the broad 



distribution forming CTA was used, then the simulated traces would assume that of the total 
chain length, a fraction f of the final chain length came from the narrow distribution forming 
CTA and 1-f came from the broad distribution forming CTA. In this way the final distribution at 
chain length n can be found by the convolution below and also in eq 29 of the main text:  
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Figure S2: Comparison of experiment, fitted model and convolved polymers. In the convolution 
one was simulated with [M]:[P-X]:[D]= 1.4:0.02:0.02 using k*=0.128 & µdecap= 14.7272 to 
match the fraction of 0.35 CTA giving a narrow distribution and the second polymer was 



simulated as [M]:[P-X]:[D]= 2.6:0.02:0.02 using k*=0.726 & µdecap= 3.2031 to match the 
fraction of 0.65 CTA giving a broad distribution.
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Figure S3: Effect of µdecap on PMMA RAFT polymer of medium dispersity.
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Figure S4. ATRP polymer simulated under: [M]: [P-X]:[D]=5.5: 3.66710-2:1.48210-5, with 
k*=0.0004 and µdecap=3.6. 

Table S4: Parameters used to model complex polymers such as blended or block copolymers.
System Label [M]:[P-X]:[D] k* µdecap DPn-Ex ĐEx DPn-Th ĐTh
ATRP Blended Narrow 250:1:0.02 0.0015 13.7 175 1.09 171 1.10

Broad 200:1:0.0005 0.00038 2.0 167 1.84 169 1.89
ATRP PMMA Block 300:1:0.03 0.0011 21 150 1.10 162 1.07
PMMA-b-EA PEA Block 300:1:0.03 0.0019 9 N/Aa N/Aa 142 1.16
PhotoRAFT PPVK block 50:1:1 0.22 9.9 45.6 1.16 42.9 1.17
PPVK-b-BA PBA block 50:1:1 0.15 25 N/Aa N/Aa 50 1.10
PET-RAFT PMMA Block 1 100:1:1 0.44 10 103 1.37 100 1.29
PMMA-b-MMA PMMA Block 2 400:1:1 0.5934 1.92 N/Aa N/Aa 113 3.8
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