Supplementary Information for

Nonstoichiometric Hydroarylation Polyaddition for Synthesis of Pyrrole-based Poly(arylenevinylene)s

Ryota Iwamori, Ryota Sato, Junpei Kuwabara, and Takaki Kanbara*

Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

Corresponding Author

Takaki Kanbara* (E-mail: kanbara@ims.tsukuba.ac.jp)

Table of contents

Experimental section 2
Nonstoichiometric polyaddition 5
Model reaction 7
${ }^{1} \mathrm{H}$ NMR and MS spectra 12
Optical data 22
GPC trace 22
References 23

Experimental section

Materials

All reagents from commercial sources were used without further purification, unless otherwise noted. Anhydrous solvents were purchased from Kanto Chemical. 4-Ethynyltoluene was purchased from Tokyo Chemical Industry. Neodecanoic acid (NDA) was purchased from Wako Pure Chemical Industries. 1-(2Pyrimidinyl)pyrrole (1a) was prepared referring to a procedure in the literature. ${ }^{1}$ 2,7-Bis(4-ethynylphenyl)-9,9-bis(2-ethylhexyl)fluorene (2a) was prepared referring to procedures in the literature ${ }^{2-4}$ and the ${ }^{1} \mathrm{H} N M R$ spectrum essentially agrees with that in the previous report. ${ }^{2}$ 1-(2-Pyridyl)pyrrole (1b), 2,7-diethynyl-9,9-bis(2ethylhexyl)fluorene (2b), and $\left[\mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ were prepared by the same method as our previous report. ${ }^{2}$ 1-(N, N-dimethylcarbamoyl)pyrrole (1c) was prepared referring to a procedure in the literature. ${ }^{5}$ The other regents were also purchased from Kanto Chemical, Tokyo Chemical Industry, and Sigma Aldrich.

General methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AVANCE-400 or AVANCE-600 NMR spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra were measured with TMS (0.00 ppm for ${ }^{1} \mathrm{H} N M R$) and $\mathrm{C}_{2} \mathrm{HD}_{3} \mathrm{Cl}_{2}$ (3.72 ppm for ${ }^{1} \mathrm{H} N M R$) as an internal reference. Gel permeation chromatography (GPC) measurements were carried out on a SHIMADZU prominence GPC system equipped with polystyrene gel columns, using THF as an eluent after calibration with polystyrene standards. MALDI-TOF-MS were recorded on an AB SCIEX MALDI TOF/TOF 5800 using trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as matrix. GC-MS were recorded on a SHIMADZU GC-2010 Plus and a GCMS-QP2010 Ultra.

Procedure for time course model reaction

To a stirred solution of a pyrrole substrate (0.10 mmol), 4-ethynyltoluene ($12.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$), and 1,3,5trimethoxybenzene ($11.2 \mathrm{mg}, 0.067 \mathrm{mmol}$) in anhydrous 1,2-dichloroethane- $d_{4}(1.5 \mathrm{~mL})$ was added $\left[\mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(1.58 \mathrm{mg}, 0.0020 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. A portion of $500 \mu \mathrm{~L}$ was transfer from the mixture to the NMR tube under a nitrogen atmosphere. After adding neodecanoic acid ($1.89 \mu \mathrm{~L}, 0.010 \mathrm{mmol}$) to the reaction mixture, ${ }^{1} \mathrm{H}$ NMR data were measured at $0,5,10,20,30,40,50,60,90,130$, and 180 min at $10{ }^{\circ} \mathrm{C}$.

General procedure for equimolar model reactions

To a stirred solution of a pyrrole substrate (0.10 mmol), 4-ethynyltoluene ($12.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$), and 1,3,5trimethoxybenzene ($11.2 \mathrm{mg}, 0.067 \mathrm{mmol}$) in anhydrous 1,2-dichloroethane (DCE, 1.5 mL) was added $\left[\mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(1.58 \mathrm{mg}, 0.0020 \mathrm{mmol})$ and neodecanoic acid (NDA, $\left.5.68 \mu \mathrm{~L}, 0.030 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at $10^{\circ} \mathrm{C}$ under nitrogen atmosphere. A portion of the reaction mixture was sampled at $0,1,2$, and 3 h . The NMR yield at each reaction time was obtained from the integral value of the signal for the product on the basis of the internal standard (1,3,5-trimethoxybenzene).

General procedure for nonstoichiometric hydroarylation polyaddition

To a stirred solution of a pyrrole monomer and an alkyne monomer with the prescribed feed ratio at 0.10 mmol scale in anhydrous DCE (1.5 mL) was added $\left[\mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(1.58 \mathrm{mg}, 0.0020 \mathrm{mmol})$ and NDA ($5.68 \mu \mathrm{~L}$, 0.030 mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for a prescribed time at $10{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere in the dark. Then the reaction mixture was diluted with DCE (50 mL) and poured into NH_{3} solution (28% in water, 50 mL). The organic layer was washed with NH_{3} solution and distilled water ($100 \mathrm{~mL} \times 2$). The organic layer was dried over sodium sulfate and filtered through a Celite ${ }^{\text {® }}$ plug. The solution of DCE was concentrated and reprecipitated into methanol. The precipitate was washed with hexane and a polymeric product was obtained.

Hydroarylation of Paa with 1-(N,N-dimethylcarbamoyl)pyrrole (1c)

To a stirred solution of Paa (20 mg, $M_{n(N M R)}=4,500,0.0044 \mathrm{mmol}, M_{\mathrm{n}(\mathrm{GPC})}=7,100, \mathrm{PDI}=2.3$) and $1-(N, N-$ dimethylcarbamoyl)pyrrole (1c) ($13.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) in anhydrous DCE (1.5 mL) was added $\left[\mathrm{Cp}{ }^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}(1.58 \mathrm{mg}, 0.0020 \mathrm{mmol})$ and $\mathrm{NDA}(5.68 \mu \mathrm{~L}, 0.030 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at $30^{\circ} \mathrm{C}$ under nitrogen atmosphere in the dark. The reaction mixture was diluted with DCE (10 mL) and poured into NH_{3} solution (28% in water, 10 mL). The organic layer was washed with NH_{3} solution and distilled water ($10 \mathrm{~mL} \times 3$). The organic layer was dried over sodium sulfate and filtered through a Celite ${ }^{\text {®囵 plug. }}$ The solution of DCE was concentrated and reprecipitated into methanol. The precipitate was collected as a yellow solid in 63% yield ($13.3 \mathrm{mg}, M_{\mathrm{n}(\mathrm{NMR})}=5,200, M_{\mathrm{n}(\mathrm{GPC})}=7,400, \mathrm{PDI}=2.6$).

Synthesis of Paa (Table 1, Entry 4)

1-(2-Pyrimidinyl)pyrrole (1a) ($29.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2,7-bis(4-ethynylphenyl)-9,9-bis(2-ethylhexyl)fluorene (2a) ($59.1 \mathrm{mg}, 0.10 \mathrm{mmol}$) were used as the monomers. The reaction was carried out at $10{ }^{\circ} \mathrm{C}$ for 90 min , giving Paa as a yellow solid in 81% yield ($59.8 \mathrm{mg}, M_{\mathrm{n}}=5.2 \times 10^{4}, \mathrm{PDI}=4.3$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.): $\delta 8.97$ (d, J $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.62(\mathrm{brm}, 8 \mathrm{H}), 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.98(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0.86-0.52(\mathrm{~m}, 30 \mathrm{H})$. Minor signals corresponding for the 1,1-vinylidene unit: $\delta 8.57$ (d, J = 4.6 Hz), 7.37 (d, J = 7.7 Hz), 6.92 (s), 6.58 (s), 5.47 (br s), 5.41 (br s). The ${ }^{1} \mathrm{H}$ NMR spectrum essentially agrees with that in the previous report. ${ }^{2}$

Synthesis of Pab (Scheme 4a)

1-(2-Pyrimidinyl)pyrrole (1a) ($29.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and 2,7-diethynyl-9,9-bis(2-ethylhexyl)fluorene (2b) (43.9 mg, 0.10 mmol) were used as the monomers. The reaction was carried out at $10{ }^{\circ} \mathrm{C}$ for 90 min , giving $\mathbf{P a b}$ as an orange solid in 83% yield ($48.4 \mathrm{mg}, M_{\mathrm{n}}=2.8 \times 10^{4}, \mathrm{PDI}=2.7$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) : $\delta 8.93(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}$, 2 H), $7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 1.93$ $(\mathrm{s}, 4 \mathrm{H}), 1.06-0.57(\mathrm{~m}, 30 \mathrm{H})$. Minor signals corresponding for the 1,1-vinylidene unit: $\delta 8.61(\mathrm{~s})$, (br m), 7.05 (s), $6.41(\mathrm{~s}), 5.34-5.13(\mathrm{br} \mathrm{m})$. The ${ }^{1} \mathrm{H}$ NMR spectrum essentially agrees with that in the previous report. ${ }^{2}$

Synthesis of Pba (Scheme 4b)

1-(2-Pyridyl)pyrrole (1b) ($25.9 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and 2,7-bis(4-ethynylphenyl)-9,9-bis(2-ethylhexyl)fluorene (2a) ($59.1 \mathrm{mg}, 0.10 \mathrm{mmol}$) were used as the monomers. The reaction was carried out at $10{ }^{\circ} \mathrm{C}$ for 25 min , giving Pba
as a yellow solid in 67% yield ($48.9 \mathrm{mg}, M_{\mathrm{n}}=2.4 \times 10^{4}, \mathrm{PDI}=2.4$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, r.t.) : $\delta 8.79$ (d, $J=4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 9 \mathrm{H}), 7.47(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 0.84-0.51(\mathrm{~m}, 30 \mathrm{H})$. Minor signals corresponding for the 1,1-vinylidene unit: $\delta 8.47$ (s$), 7.17$ ($\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}$), $7.10(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}), 6.48$ (s$), 5.39(\mathrm{br} \mathrm{s})$, 5.24 (br s). The ${ }^{1} \mathrm{H}$ NMR spectrum essentially agrees with that in the previous report. ${ }^{2}$

Synthesis of monoalkenylated compound (3a) by Rh-catalyzed direct alkenylation ${ }^{6}$

Scheme S1. Synthesis of monoalkenylated compound (3a)

A mixture of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(168 \mathrm{mg}, 0.84 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(4.94 \mathrm{mg}, 8.0 \mu \mathrm{~mol})$, 1-(2-pyrimidinyl)pyrrole (29.0 $\mathrm{mg}, 0.20 \mathrm{mmol})$, and 4 -methylstyrene ($45.8 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) was stirred in anhydrous DMF (2.4 mL) for 4 h at 100 ${ }^{\circ} \mathrm{C}$ under nitrogen atmosphere in the dark. Then the reaction mixture was cooled to room temperature. The mixture was dissolved in dichloromethane (40 mL) and ethylenediamine (1.6 mL). The organic layer was washed with distilled water ($40 \mathrm{~mL} \times 3$) and dried over sodium sulfate. The product was purified by column chromatography on silica gel using chloroform as an eluent and High Performance Liquid Chromatography (HPLC). Monoalkenylated compound (3a) was obtained as a white solid ($18.1 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.): $\delta 8.68(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ ($\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.08(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H})$. GC-MS calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3}$: 261.13; found: 261.1. The spectral data of 3a are shown in Figures S24, S25.

Nonstoichiometric polyaddition

Table S1. Nonstoichiometric hydroarylation polyaddition for Paa with longer reaction time a

$\stackrel{\pi 1}{N-N}$	$\equiv B$	π 2a	$\frac{\left[\mathrm{CP}^{2} \mathrm{CO} \mathrm{Cl}_{1} \mathrm{CH}_{3} \mathrm{CN}\right)_{3} / \mathrm{Sb}}{\mathrm{NoA}, \mathrm{DCE}, 10^{\circ} \mathrm{C}, \mathrm{Tm}}$				
Entry	1a: 2 a	Time [min]	Yield ${ }^{\text {b }}$ [\%]	$M_{n}{ }^{\text {c }}$	$M_{\text {n }}(\text { Calcd })^{\text {d }}$	PDI ${ }^{\text {c }}$	Regioselectivity ${ }^{\text {e }}$
1	$2: 1$	90	81	52,000	2,200	4.3	92 : 8
2	2:1	120	- ${ }^{\text {f }}$	-	-	-	-
3	$5: 1$	30	53	20,000	1,100	2.3	92:8
4	$5: 1$	40	-f	-	-	-	-

${ }^{\mathrm{a}}\left[\mathrm{Cp}^{*} \mathrm{Co}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right]{ }_{3}\left(\mathrm{SbF}_{6}\right)_{2}\right.$ (2 mol\%), neodecanoic acid (NDA, $30 \mathrm{~mol} \%$), 1,2-dichloroethane (DCE, 1.5 mL) were used.
${ }^{\mathrm{b}}$ The products were obtained by reprecipitation from DCE-CH3 OH . The yields were calculated on the basis of the feeding quantity of 2a. ${ }^{\text {c }}$ Estimated by GPC calibrated on polystyrene standards using THF at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}}$ Calculated by Carothers equation. ${ }^{\mathrm{e}}$ The ratio of 1,2 -vinylene to 1,1 -vinylidene calculated from the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{\mathrm{f}}$ Gelation of the reaction mixture was observed.

Table S2. Nonstoichiometric hydroarylation polyaddition of other aromatic monomers

${ }^{\text {a }}$ The products were obtained by reprecipitation from $\mathrm{DCE}-\mathrm{CH}_{3} \mathrm{OH}$. The yields were calculated on the basis of the feeding quantity of $\mathbf{2 a}$ or $\mathbf{2 b} .{ }^{\text {b }}$ Estimated by GPC calibrated on polystyrene standards using THF at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{c}}$ Calculated by Carothers equation. ${ }^{7}$
(a) General catalytic cycle of hydroarylation of alkynes

(b) Intramolecular catalyst transfer in the Co-catalyzed hydroarylation

Figure S1. Catalytic cycles of hydroarylation of alkynes.

Model reaction

Scheme S2. Intramolecular catalyst transfer on 1a in the equimolar model reaction

Scheme S3. Equimolar model reaction of 1-phenylpyrrole with 4-ethynyltoluene

Scheme S4. Equimolar model reaction of 1b with 4-ethynyltoluene

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of equimolar model reaction of 1 a with 4-ethynyltoluene and 3 a (Scheme 2, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S3. GC-MS of the reaction crude after the equimolar model reaction of 1a with 4-ethynyltoluene
(Scheme 2). * Impurities from operations.

1a

2'

4a

Internal standard

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of the time course model reaction of $1 \mathrm{a}\left(600 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{4} \mathrm{Cl}_{2}, 283 \mathrm{~K}\right)$.

Table S3. Data of time course model reaction of 1a with 2 ${ }^{\prime 8}$

Time (min)	Conversion of 2' (\%)	3a (\%)	4a (\%)	4a/(3a+4a)
0	0	0	0	-
5	15	0	7.5	1
10	23	0	11	1
20	33	0	19	1
30	46	0	25	1
40	55	0	31	1
50	65	0	41	1
90	74	0	51	1
130	90	0	50	1
180	100	0	51	1
a Calculated by $100 \times\left(1-\left[\mathbf{2}^{\prime}\right]_{\mathrm{t}} /\left[\mathbf{2}^{\prime}\right]_{0}\right) .{ }^{\text {b }}$ Calculated by $100 \times[\mathbf{4 a}]_{\mathrm{t}} /[\mathbf{1 a}]_{0}$.		1		

Figure S5. Plot of product (4a) ratio vs percent conversion of $\mathbf{2}^{18}$

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of equimolar model reaction of 1 b with 4 -ethynyltoluene
(Scheme S4, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S7. GC-MS of the reaction crude after the equimolar model reaction of 1 b with 4 -ethynyltoluene
(Scheme S4).

${ }^{1} \mathrm{H}$ NMR and MS spectra

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of Paa under the stoichiometric conditions
(1a: 2a = 1:1, Table 1, Entry 1, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S9. MALDI-TOF-MS of Paa under the stoichiometric conditions
(1a: 2a = 1:1, Table 1, Entry 1).

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of Paa under the nonstoichiometric conditions
(1a: 2a = 2:1, Table 1, Entry 3, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S11. MALDI-TOF-MS of Paa under the nonstoichiometric conditions (1a:2a=2:1, Table 1, Entry 3).

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of Paa under the nonstoichiometric conditions (1a:2a=5:1, Table 1, Entry 4, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of Paa modified by 1 c (Scheme 3, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S14. MALDI-TOF-MS of Paa modified by 1c (Scheme 3).
(a) Before the end-capping reaction (b) After the end-capping reaction

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of Pab under the stoichiometric conditions (1a:2b=1:1, Table S2, Entry 1, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S16. MALDI-TOF-MS of Pab under the stoichiometric conditions (1a: 2b = 1:1, Table S2, Entry 1).

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of Pab under the nonstoichiometric conditions (1a: 2b = 2:1, Scheme $\mathbf{4 a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S18. MALDI-TOF-MS of Pab under the nonstoichiometric conditions
(1a:2b=2:1, Scheme 4a).

Repeating unit: $\mathrm{C}_{41} \mathrm{H}_{49} \mathrm{~N}_{3}(\mathrm{~m} / \mathrm{z}=583.4) \quad$ B: $\quad \mathrm{R}=\mathrm{H}$

Figure S19. MALDI-TOF-MS of Pab under the nonstoichiometric conditions with various reaction time (1a: 2b = 2:1, 30 min : Table S2, Entry 2; 60 min : Table S2, Entry 3; 90 min : Scheme 4a).

Figure S20. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of Pba under the stoichiometric conditions (1b: 2a = 1:1, Table S2, Entry 5, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S21. MALDI-TOF-MS of Pba under the stoichiometric conditions
(1b: 2a = 1:1, Table S2, Entry 5).

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of Pba under the nonstoichiometric conditions
(1b: 2a = 2:1, Scheme 4b , $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, r.t.).

Figure S23. MALDI-TOF-MS of Pba under the nonstoichiometric conditions
(1b: 2a = 2:1, Scheme 4b).

Figure $\mathbf{S 2 4 .}{ }^{1} \mathrm{H}$ NMR spectrum of 3 a prepared by direct alkenylation (Scheme $\mathbf{S 1}, \mathbf{4 0 0} \mathbf{M H z}, \mathrm{CDCl}_{3}$, r.t.).

Figure S25. GC-MS of 3a prepared by direct alkenylation (Scheme S1). * Impurities from operations.

Optical data

Figure S26. UV absorption spectrum of Paa in the film state (Table 1, Entry 3).

GPC traces

Figure S27. GPC traces of Paa synthesized by nonstoichiometric polyaddition (Table 1).

References

1 B. Zuo, J. Chen, M. Liu, J. Ding, H. Wu and W. Su, J. Chem. Res., 2009, 3, 14-16.
2 R. Iwamori, R. Sato, J. Kuwabara, T. Yasuda and T. Kanbara, Macromol. Rapid Commun., 2021, 42, 2100283.
3 H. H. Zhang, C. H. Xing, G. B. Tsemo and Q. S. Hu, ACS Macro Lett., 2013, 2, 10-13.
4 Y. L. Wu, N. S. Bobbitt, J. L. Logsdon, N. E. Powers-Riggs, J. N. Nelson, X. Liu, T. C. Wang, R. Q. Snurr, J. T. Hupp, O. K. Farha, M. C. Hersam and M. R. Wasielewski, Angew. Chem. Int. Ed., 2018, 57, 3985-3989.
R. Tanaka, H. Ikemoto, M. Kanai, T. Yoshino and S. Matsunaga, Org. Lett., 2016, 18, 5732-5735.

6 H. Saito, J. Kuwabara, T. Yasuda and T. Kanbara, Polym. Chem., 2016, 7, 2775-2779.
7 G. Odian, Principles of Polymerization, $3^{\text {rd }}$ ed, Wiley: New York, 1991.
Z. J. Bryan, A. O. Hall, C. T. Zhao, J. Chen and A. J. McNeil, ACS Macro Lett., 2016, 5, 69-72.

