PolyDODT: A Macrocyclic Elastomer with Unusual Properties

Kristof Molnar,^a Hojin Kim,^b Dongjie Chen,^c Carin A. Helfer,^a Gabor Kaszas,^a Gregory B. McKenna,^{c,d} Julia A. Kornfield,^b Chunhua Yuan,^e Judit E. Puskas^{*a}

e. North Carolina State University, Department of Chemical and Biomolecular Engineering, Raleigh, NC 27695-7905

Figure S1. Setup for the synthesis of polyDODTs, where the precipitated white rubber is visible at the bottom of the beaker (A) and pictures of the final, water-clear low molecular weight (B) and high molecular weight (C) products after purification.

^{a.} The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Department of Food, Agricultural and Biological Engineering, 220 FABE, 1680 Madison Avenue, Wooster, OH 44691

^{b.} California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125

^{c.} Texas Tech University, Department of Chemical Engineering, Lubbock, TX 79409-3121

^{d.} The Ohio State University, Campus Chemical Instrument Center, 496 W 12th Ave, Columbus, OH 43210

Figure S2. 800 MHz ¹H NMR of L2.2 M_n (NMR) = 82,900 g/mol, Table 4). Scaling factor is 1 and for the insets it is 64. Resonances of the main chain are $\delta H(800 \text{ MHz}; \text{CDCl}_3; \text{CDCl}_3)$ 2.98 (4 H_{dr} t, CH₂SSCH₂); 3.65 (4 H_{fr} s, OCH₂CH₂O); 3.75 (4 H_{er} t, OCH₂CH₂CO) ppm, while resonances related to the end group appear at 1.6 (2 H_{ar} t, SH) and 2.75 (4 H_{br} q, CH₂SH) ppm.

Figure S3. ¹³C NMR (700 MHz) of sample L1.1. (M_n (NMR) = 33,800 g/mol, Table 4) in CDCl₃. Scaling factor is 8. The main chain carbon signals are δC (700 MHz; CDCl₃; CDCl₃) 38.6 (2 C_D , s, CH_2SSCH_2); 69.9 (2 C_F , s, OCH_2CH_2O); 70.6 (C_F , s, OCH_2CH_2S) ppm, while a signal related to the methylene carbon next to the thiol end group can be seen at 24.6 ppm.

Figure S4. 800 MHz ¹H NMR spectrum of C3.1 M_n (SEC) = 35,800 g/mol. Insets: enlarged regions to show the absence of -CH₂-SH at 2.71 ppm and -CH₂-SH at 1.6 ppm 1.5 – 1.8 ppm. Scaling factor is 1 and for the insets it is 64.