Highly Tunable Metal-Free Ring Opening Polymerization of Glycidol into Various Controlled Topologies Catalyzed by Frustrated Lewis Pairs

Si Eun Kim, ${ }^{a, b}$ Yu-Ri Lee, ${ }^{c}$ Minseong Kim, ${ }^{d, e}$ Eunyong Seo, ${ }^{f}$ Hyun-Jong Paik, ${ }^{b}$ Jin Chul Kim, ${ }^{a}$ JiEun Jeong, ${ }^{a}$ Young Il Park, ${ }^{a *}$ Byeong-Su Kim, ${ }^{d *}$ and Sang-Ho Lee ${ }^{a *}$
${ }^{a}$ Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
${ }^{b}$ Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
${ }^{c}$ Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
${ }^{d}$ Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
${ }^{e}$ Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
${ }^{f}$ Department of Chemical Engineering, Ulsan College, Ulsan 44610, Republic of Korea

Correspondence and requests for materials should be addressed to
S.-H.L. (e-mail: slee@krict.re.kr), B.-S.K. (e-mail: bskim19@yonsei.ac.kr), Y.I.P. (e-mail: ypark@krict.re.kr)

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of (A) TBA $\left([T B A]_{0}=40 \mathrm{mM}\right.$ in toluene) at $25^{\circ} \mathrm{C}$, (B) a mixture prepared with a 2:1 ratio $\left([T B A]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C}$, and (C) a mixture prepared with a 2:1 ratio $\left([T B A]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $80^{\circ} \mathrm{C} ;{ }^{11} \mathrm{~B}$ NMR spectra of $(\mathrm{D}) \mathrm{BCF}$ $\left([\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C}$, (E) a mixture prepared with a $2: 1$ ratio $\left([\mathrm{TBA}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=\right.$ $20 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$, and (F) a mixture prepared with a $2: 1$ ratio $\left([\mathrm{TBA}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $80^{\circ} \mathrm{C}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of (A) Py $\left([\mathrm{Py}]_{0}=40 \mathrm{mM}\right.$ in toluene $)$ at $25^{\circ} \mathrm{C}$, (B) a mixture of Py and BCF with a $2: 1$ ratio $\left([\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C},(\mathrm{C})$ a mixture of Py and BCF with a 2:1 ratio $\left([P y]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $80^{\circ} \mathrm{C},{ }^{11} \mathrm{~B}$ NMR spectra of (D) BCF $\left([\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C}$, (E) a mixture of Py and BCF with a $2: 1$ ratio $\left([\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}\right.$ $=20 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$, and (F) a mixture of Py and BCF with a $2: 1$ ratio $\left([\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=\right.$ $20 \mathrm{mM})$ at $80^{\circ} \mathrm{C}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $(\mathrm{A})\left([\mathrm{GD}]_{0}=40 \mathrm{mM}\right.$ in toluene $)$ at $25^{\circ} \mathrm{C},(\mathrm{B})$ a mixture of GD and Py with a 1:1 ratio $\left([\mathrm{GD}]_{0}=40 \mathrm{mM} ;[\mathrm{Py}]_{0}=40 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C}$, (C) a mixture of GD and $\mathrm{BCF}-\mathrm{Py}$ $\left([\mathrm{GD}]_{0}=40 \mathrm{mM} ;[\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C}$, (D) a mixture of GD and BCF-Py $\left([\mathrm{GD}]_{0}=40 \mathrm{mM} ;[\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $80^{\circ} \mathrm{C} ;{ }^{11} \mathrm{~B}$ NMR spectra of $(\mathrm{E}) \mathrm{BCF}$ $\left([\mathrm{BCF}]_{0}=20 \mathrm{mM}\right)$ at $25^{\circ} \mathrm{C},(\mathrm{F})$ a mixture of Py and BCF with a $2: 1$ ratio $\left([\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}\right.$ $=20 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$, (G) a mixture of GD and BCF-Py $\left([\mathrm{GD}]_{0}=40 \mathrm{mM} ;[\mathrm{Py}]_{0}=40 \mathrm{mM} ;[\mathrm{BCF}]_{0}\right.$ $=20 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$, and (H) a mixture of GD and BCF-Py $\left([\mathrm{GD}]_{0}=40 \mathrm{mM} ;[\mathrm{Py}]_{0}=40 \mathrm{mM}\right.$; $\left.[B C F]_{0}=20 \mathrm{mM}\right)$ at $80^{\circ} \mathrm{C}$.

(A) TBA-P15

Figure S4. Inverse-gated ${ }^{13} \mathrm{C}$ NMR spectra (DMSO- d_{6}, room temperature) of (A) TBA-P15 $\left([\mathrm{GD}]_{0}=2500 \mathrm{mM} ;\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM} ;[\mathrm{TBA}]_{0}=12 \mathrm{mM}\right.$ in toluene $)$, and (B) Py-P11 $\left([\mathrm{GD}]_{0}=\right.$ $2500 \mathrm{mM} ;\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM} ;[\mathrm{Py}]_{0}=6 \mathrm{mM}$ in toluene $)$.

Electronic Supplementary Information

Figure S5. Representative MALDI-ToF spectra for (A) TBA-P15 (hb-PG), (B) Py-P11 (bc-PG) and (C) linear PG (lin-PG) from 1500 to 4500 Da .
(A) PTGE

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of (A) poly(TGE) ([benzyl alcohol $]_{0}=65 \mathrm{mM} ;\left[t-\mathrm{BuP}_{4}\right]_{0}=84.5 \mathrm{mM}$; $[\mathrm{TGE}]_{0}=2340 \mathrm{mM}$ in toluene at $25^{\circ} \mathrm{C}$ for 24 h$)$ and (B) lin-PG (a solution of poly(TGE) $(0.5 \mathrm{~g}$, $\left.M_{\mathrm{n}, \mathrm{NMR}}=5650\right)$ in $\mathrm{HCl} / \mathrm{MeOH}(1.25 \mathrm{M}, 0.13 \mathrm{~mL})$ at room temperature for 24 h$)$.

Figure S7. DSC profiles (heating, $10{ }^{\circ} \mathrm{C} / \mathrm{min}$) of topology-controlled PGs (TBA-P15 (hyperbranched), Py-P11 (branched cyclic), and linear PG).

Figure S8. Stejskal-Tanner plot obtained from ${ }^{1} \mathrm{H}$ DOSY spectra and the determined diffusion coefficient (D) values.

Electronic Supplementary Information

Figure S9. ${ }^{1} \mathrm{H}$ DOSY spectra (DMSO- d_{6}, room temperature) of lin-PG.

Figure S10. ${ }^{1} \mathrm{H}$ DOSY spectra (DMSO- d_{6}, room temperature) of TBA-P15 (hyperbranched).

Electronic Supplementary Information

Figure S11. ${ }^{1} \mathrm{H}$ DOSY spectra (DMSO- d_{6}, room temperature) of Py-P11 (branched cyclic).

Electronic Supplementary Information

Figure S12. SEC curves of (A) TBA-P15 (hb-PG), (B) Py-P1 1 (bc-PG) and (C) linear PG (linPG).

Table S1. Structural control of PGs via BCF catalyst with $(n-\mathrm{Bu})_{3} \mathrm{~N}$ as Lewis base ${ }^{a}$

Polymer code	$\begin{gathered} {\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}} \\ (\mathrm{mM}) \end{gathered}$	$\begin{gathered} {\left[(n-B u)_{3} N\right]_{0}} \\ (\mathbf{m M}) \end{gathered}$	Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Time	Conv. $(\%)^{b}$	$M_{\mathrm{n}}{ }^{\text {c }}$	$M_{\mathrm{w}} / M_{\mathrm{n}}{ }^{\text {c }}$	DB ${ }^{d}$
BCF-P1	3	0	25	15 min	94.7	2720	1.55	0.38
TBA-P2	0	12	25	72 h	55.0	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P3	0	12	100	6 h	99.7	1620	1.53	0.67
TBA-P4	3	3	0	24 h	<5	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P5	3	3	25	24 h	<5	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P6	3	3	80	24 h	99.8	1950	1.65	0.51
TBA-P7	3	3	100	24 h	99.8	1830	1.48	0.49
TBA-P8	3	6	0	24 h	<5	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P9	3	6	25	72 h	44.7	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P10	3	6	80	6 h	93.3	1600	1.87	0.50
TBA-P1 1	3	6	100	3 h	96.4	1420	1.74	0.50
TBA-P12	3	12	0	72 h	49.6	n / d^{e}	n / d^{e}	n / d^{e}
TBA-P13	3	12	25	72 h	97.4	1500	1.60	0.46
TBA-P14	3	12	80	6 h	99.8	1640	1.73	0.49
TBA-P15	3	12	100	6 h	99.7	1790	1.92	0.51

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM}$ in toluene. ${ }^{b}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR with tetralin as an internal standard. ${ }^{c}$ Measured by size-exclusion chromatography calibrated with PEO standards in DMF (50 mM LiBr, $45^{\circ} \mathrm{C}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$). ${ }^{d}$ Degree of branching (DB) was calculated by inverse-gated ${ }^{13} \mathrm{C}$ NMR using the following equation: $(D+T) /(D+T+L)(D=$ dendritic unit; T $=$ terminal unit; $L=$ linear unit). ${ }^{e}$ Not determined.

Table S2. Structural control of PGs using BCF catalyst with pyridine as Lewis base ${ }^{a}$

Polymer code	$\left.\left[\mathbf{B}\left(\mathbf{C}_{6} \mathbf{F}_{5}\right)\right)_{3}\right]_{0}$ $(\mathbf{m M})$	$[\text { Pyridine }]_{0}$ $(\mathbf{m M})$	Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Time	Conv. $(\%)^{b}$	$\boldsymbol{M}_{\mathbf{n}}{ }^{c}$	$\boldsymbol{M}_{\mathrm{w}} / \boldsymbol{M}_{\mathbf{n}}{ }^{c}$	$\mathbf{D B}^{d}$
BCF-P1	3	0	25	15 min	94.7	2720	1.55	0.38
Py-P2	0	6.0	0	24 h	<1.0	n / d^{e}	n / d^{e}	n / d^{e}
Py-P3	0	6.0	100	24 h	99.5	1670	1.50	0.50
Py-P4	3	3.0	0	12 d	49.03	n / d^{e}	n / d^{e}	n / d^{e}
Py-P5	3	3.0	25	12 d	50.41	n / d^{e}	n / d^{e}	n / d^{e}
Py-P6	3	3.0	80	12 d	>99.9	3210	1.10	0.44
Py-P7	3	3.0	100	6 d	>99.9	1480	1.99	0.45
Py-P8	3	6.0	0	18 h	<1.0	n / d^{e}	n / d^{e}	n / d^{e}
Py-P9	3	6.0	25	6 d	91.6	1190	1.18	0.48
Py-P10	3	6.0	80	18 h	97.98	1430	1.60	0.49
Py-P11	3	6.0	100	18 h	92.3	1370	1.67	0.49

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM}$ in toluene. ${ }^{b}$ Conversion was determined by ${ }^{1} \mathrm{H}$ NMR with tetralin as an internal standard. ${ }^{c}$ Measured by size-exclusion chromatography calibrated with PEO standards in DMF ($50 \mathrm{mM} \mathrm{LiBr}, 45^{\circ} \mathrm{C}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$). ${ }^{d}$ Degree of branching (DB) was calculated by inverse-gated ${ }^{13} \mathrm{C}$ NMR with following equation: $(D+T) /(D+T+L)(D=$ dendritic unit; $T=$ terminal unit; $L=$ linear unit). ${ }^{e}$ Not determined.

Table S3. Structural control of PGs using BCF catalyst with $(n-B u)_{3} \mathrm{~N}$ as Lewis base at different polymerisation temperatures a, b

Region	Chemical shift (ppm)	BCF-P1	TBA-P3	TBA-P13	TBA-P14	TBA-P15
$\mathrm{L}_{1,3}$	60.6-61.2	2.32	1.09	0.75	1.56	1.62
$2 \mathrm{~T}_{2}$	61.2-61.8	0.83	0.91	1.54	0.00	1.57
T_{1}	63.0-63.3	1.41	2.62	3.89	4.82	6.13
$\mathrm{L}_{1,3}, \mathrm{~L}_{1,4}$	68.5-69.7	2.60	4.36	6.54	7.57	8.35
2D, $2 \mathrm{~T}_{1}$	70.4-72.0	5.47	9.54	12.91	16.15	21.01
$2 \mathrm{~L}_{1,4}$	72.7-73.2	3.44	1.60	11.56	11.61	13.50
D	77.7-78.9	0.57	1.57	1.76	2.19	2.48
$\mathrm{L}_{1,3}$	79.7-80.4	1.00	1.00	1.00	1.00	1.00
T_{2}	81.5-82.2	0.42	0.00	0.00	0.00	0.00
Structure units (\%) ${ }^{c}$						
D units		9	26	15	15	15
L units		63	31	53	51	49
$\text { (} L_{l, 3} \text { units) }$		(36)	(18)	(6)	(11)	(9)
($L_{1,4}$ units)		(27)	(13)	(47)	(40)	(40)
T units		28	43	32	34	36
(T_{1} units)		(22)	(43)	(32)	(34)	(36)
$\text { (} T_{2} \text { units) }$		(6)	(0)	(0)	(0)	(0)
Degree of Branching ${ }^{d}$		0.37	0.69	0.47	0.49	0.51

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM},\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM}$ or $/$ and $[\mathrm{TBA}]_{0}=12 \mathrm{mM}$ in toluene at 25,80 , and $100^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained by inverse gated ${ }^{13} \mathrm{C}$ NMR. ${ }^{c}$ The structure units (\%) were calculated from the following equation: integration ratio of each structure region $/(D+T+L) \times 100$. ${ }^{d}$ Degree of branching (DB) $=(D+T) /(D+T+L)$.

Table S4. Structural control of PGs via BCF with different concentration of $(n-\mathrm{Bu})_{3} \mathrm{~N}^{a, b}$

Region	Chemical shift (ppm)	BCF-P1	TBA-P3	TBA-P7	TBA-P11	TBA-P15
$\mathrm{L}_{1,3}$	60.6-61.2	2.32	1.09	1.89	1.56	1.62
$2 \mathrm{~T}_{2}$	61.2-61.8	0.83	0.91	1.44	1.64	1.57
T_{1}	63.0-63.3	1.41	2.62	9.49	6.88	6.13
$\mathrm{L}_{1,3}, \mathrm{~L}_{1,4}$	68.5-69.7	2.60	4.36	11.52	10.11	8.35
2D, $2 \mathrm{~T}_{1}$	70.4-72.0	5.47	9.54	23.34	23.30	21.01
$2 \mathrm{~L}_{1,4}$	72.7-73.2	3.44	1.60	20.74	16.01	13.50
D	77.7-78.9	0.57	1.57	2.22	2.83	2.48
$\mathrm{L}_{1,3}$	79.7-80.4	1.00	1.00	1.00	1.00	1.00
T2	81.5-82.2	0.42	0.00	0.05	0.00	0.00
Structure units (\%) ${ }^{c}$						
D units		9	26	9	15	15
L units		63	31	51	49	49
$\text { (} L_{l, 3} \text { units) }$		(36)	(18)	(8)	(8)	(9)
($L_{1,4}$ units)		(27)	(13)	(43)	(41)	(40)
T units		28	43	40	36	36
(T_{1} units)		(22)	(43)	(40)	(36)	(36)
$\text { (} T_{2} \text { units) }$		(6)	(0)	(0)	(0)	(0)
$\text { Degree of Branching }{ }^{d}$		0.37	0.69	0.49	0.50	0.51

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM},\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM}$ or $/$ and $[\mathrm{TBA}]_{0}=3,6$, and 12 mM in toluene at $100{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained by inverse-gated ${ }^{13} \mathrm{C}$ NMR. ${ }^{c}$ The structure units (\%) were calculated from the following equation: integration ratio of each structure region $/(D+T+L) \times 100$. ${ }^{d}$ Degree of branching (DB) $=(D+T) /(D+T+L)$.

Table S5. Structural control of PGs using BCF catalyst with pyridine as Lewis base at different polymerisation temperatures a, b

Region	Chemical shift (ppm)	BCF-P1	Py-P3	Py-P9	Py-P10	Py-P11
$\mathrm{L}_{1,3}$	60.6-61.2	2.32	0.70	0.88	1.37	1.17
$2 \mathrm{~T}_{2}$	61.2-61.8	0.83	0.58	0.00	0.86	2.82
T_{1}	63.0-63.3	1.41	1.52	6.18	6.27	23.78
$\mathrm{L}_{1,3}, \mathrm{~L}_{1,4}$	68.5-69.7	2.60	2.37	9.56	8.47	20.30
2D, 2T ${ }_{1}$	70.4-72.0	5.47	5.01	17.25	18.69	64.02
$2 \mathrm{~L}_{1,4}$	72.7-73.2	3.44	3.27	19.02	15.55	55.84
D	77.7-78.9	0.57	0.85	1.90	1.47	3.57
$\mathrm{L}_{1,3}$	79.7-80.4	1.00	1.00	1.00	1.00	1.00
T_{2}	81.5-82.2	0.42	0.00	0.00	0.00	0.00
Structure units (\%) ${ }^{\text {c }}$						
D units		9	18	10	9	6
L units		63	50	56	54	52
$\text { (} L_{l, 3} \text { units) }$		(36)	(15)	(5)	(8)	(2)
$\text { (} L_{l, 4} \text { units) }$		(27)	(35)	(51)	(46)	(50)
T units		28	32	34	37	42
$\text { (} T_{1} \text { units) }$		(22)	(32)	(34)	(37)	(42)
(T_{2} units)		(6)	(0)	(0)	(0)	(0)
Degree of Branching ${ }^{\text {d }}$		0.37	0.50	0.44	0.46	0.48

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM},\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM}$ or/and $[\text { pyridine }]_{0}=6 \mathrm{mM}$ in toluene at 25,80 , and $100{ }^{\circ} \mathrm{C} .{ }^{b}$ Obtained by inverse-gated ${ }^{13} \mathrm{C}$ NMR. ${ }^{c}$ The structure units (\%) were calculated from the following equation: integration ratio of each structure region $/(D+T+L) \times 100$. ${ }^{d}$ Degree of branching $(\mathrm{DB})=(D+T) /(D+T+L)$.

Table S6. Structural control of PGDs using BCF with different concentration of pyridine ${ }^{a, b}$

Region	Chemical shift $(\mathbf{p p m})$	BCF-P1	Py-P3	Py-P7	Py-P11
$\mathrm{L}_{1,3}$	$60.6-61.2$	2.32	0.70	2.15	1.17
$2 \mathrm{~T}_{2}$	$61.2-61.8$	0.83	0.58	0.89	2.82
$\mathrm{~T}_{1}$	$63.0-63.3$	1.41	1.52	4.08	23.78
$\mathrm{~L}_{1,3}, \mathrm{~L}_{1,4}$	$68.5-69.7$	2.60	2.37	4.05	20.30
$2 \mathrm{D}, 2 \mathrm{~T}_{1}$	$70.4-72.0$	5.47	5.01	9.03	64.02
$2 \mathrm{~L}_{1,4}$	$72.7-73.2$	3.44	3.27	7.94	55.84
D	$77.7-78.9$	0.57	0.85	0.40	3.57
$\mathrm{~L}_{1,3}$	$79.7-80.4$	1.00	1.00	1.00	1.00
$\mathrm{~T}_{2}$	$81.5-82.2$	0.42	0.00	0.60	0.00

Structure units (\%) ${ }^{c}$

D units	$\mathbf{9}$	$\mathbf{1 8}$	$\mathbf{4}$	$\mathbf{6}$
L units	$\mathbf{6 3}$	$\mathbf{5 0}$	$\mathbf{5 4}$	$\mathbf{5 2}$
$\left(L_{l, 3}\right.$ units $)$	(36)	(15)	(19)	(2)
$\left(L_{l, 4}\right.$ Units)	(27)	(35)	(35)	(50)
T units	$\mathbf{2 8}$	$\mathbf{3 2}$	$\mathbf{4 2}$	$\mathbf{4 2}$
$\left(T_{1} \text { units }\right)^{\left(T_{2} \text { units }^{d}\right.}$	(22)	(32)	(37)	(42)
Degree of Branching d	(6)	(0)	(5)	(0)

${ }^{a}[\mathrm{GD}]_{0}=2500 \mathrm{mM},\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]_{0}=3 \mathrm{mM}$ or $/$ and $[\text { pyridine }]_{0}=3$ and 6 mM in toluene at $100{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained by inverse-gated ${ }^{13} \mathrm{C}$ NMR. ${ }^{c}$ The structure units (\%) were calculated from the following equation: integration ratio of each structure region $/(D+T+L) \times 100$. ${ }^{d}$ Degree of branching (DB) $=(D+T) /(D+T+L)$.

