Electronic Supplementary Information

Highly Tunable Metal-Free Ring Opening Polymerization of Glycidol into Various Controlled Topologies Catalyzed by Frustrated Lewis Pairs

Si Eun Kim,^{a,b} Yu-Ri Lee,^c Minseong Kim,^{d,e} Eunyong Seo,^f Hyun-Jong Paik,^b Jin Chul Kim,^a Ji-

Eun Jeong,^a Young Il Park,^a* Byeong-Su Kim,^d* and Sang-Ho Lee^a*

^aCenter for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology

(KRICT), Ulsan 44412, Republic of Korea

^bDepartment of Polymer Science and Engineering, Pusan National University, Busan 46241,

Republic of Korea

^cMaterials Architecturing Research Center, Korea Institute of Science and Technology (KIST),

Seoul 02792, Republic of Korea

^dDepartment of Chemistry, Yonsei University, Seoul 03722, Republic of Korea

^eDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan

44919, Republic of Korea

^fDepartment of Chemical Engineering, Ulsan College, Ulsan 44610, Republic of Korea

Correspondence and requests for materials should be addressed to

S.-H.L. (e-mail: slee@krict.re.kr), B.-S.K. (e-mail: bskim19@yonsei.ac.kr), Y.I.P. (e-mail: ypark@krict.re.kr)

Figure S1. ¹H NMR spectra of (A) TBA ($[TBA]_0 = 40 \text{ mM}$ in toluene) at 25 °C, (B) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (C) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 80 °C; ¹¹B NMR spectra of (D) BCF ($[BCF]_0 = 20 \text{ mM}$) at 25 °C, (E) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture prepared with a 2:1 ratio ($[TBA]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 80 °C.

Figure S2. ¹H NMR spectra of (A) Py ($[Py]_0 = 40 \text{ mM}$ in toluene) at 25 °C, (B) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, (C) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 80 °C, ¹¹B NMR spectra of (D) BCF ($[BCF]_0 = 20 \text{ mM}$) at 25 °C, (E) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 25 °C, and (F) a mixture of Py and BCF with a 2:1 ratio ($[Py]_0 = 40 \text{ mM}$; $[BCF]_0 = 20 \text{ mM}$) at 80 °C.

Figure S3. ¹H NMR spectra of (A) ([GD]₀ = 40 mM in toluene) at 25 °C, (B) a mixture of GD and Py with a 1:1 ratio ([GD]₀ = 40 mM; [Py]₀ = 40 mM) at 25 °C, (C) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 25 °C, (D) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 80 °C; ¹¹B NMR spectra of (E) BCF ([BCF]₀ = 20 mM) at 25 °C, (G) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [BCF]₀ = 20 mM) at 25 °C, (G) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 25 °C, (G) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 25 °C, and (H) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 25 °C, and (H) a mixture of GD and BCF-Py ([GD]₀ = 40 mM; [Py]₀ = 40 mM; [BCF]₀ = 20 mM) at 80 °C.

Figure S4. Inverse-gated ¹³C NMR spectra (DMSO- d_6 , room temperature) of (A) TBA-P15 ([GD]₀ = 2500 mM; [B(C₆F₅)₃]₀ = 3 mM; [TBA]₀ = 12 mM in toluene), and (B) Py-P11 ([GD]₀ = 2500 mM; [B(C₆F₅)₃]₀ = 3 mM; [Py]₀ = 6 mM in toluene).

Figure S5. Representative MALDI-ToF spectra for (A) TBA-P15 (*hb*-PG), (B) Py-P11 (*bc*-PG) and (C) linear PG (*lin*-PG) from 1500 to 4500 Da.

Figure S6. ¹H NMR spectra of (A) poly(TGE) ([benzyl alcohol]₀ = 65 mM; $[t-BuP_4]_0 = 84.5$ mM; [TGE]₀ = 2340 mM in toluene at 25 °C for 24 h) and (B) *lin*-PG (a solution of poly(TGE) (0.5 g, $M_{n, NMR} = 5650$) in HCl/MeOH (1.25 M, 0.13 mL) at room temperature for 24 h).

Figure S7. DSC profiles (heating, 10 °C/min) of topology-controlled PGs (TBA-P15 (hyperbranched), Py-P11 (branched cyclic), and linear PG).

Figure S8. Stejskal–Tanner plot obtained from ¹H DOSY spectra and the determined diffusion coefficient (D) values.

Figure S9. ¹H DOSY spectra (DMSO-*d*₆, room temperature) of *lin*-PG.

Figure S10. ¹H DOSY spectra (DMSO-*d*₆, room temperature) of TBA-P15 (hyperbranched).

Figure S11. ¹H DOSY spectra (DMSO- d_6 , room temperature) of Py-P11 (branched cyclic).

Figure S12. SEC curves of (A) TBA-P15 (*hb*-PG), (B) Py-P11 (*bc*-PG) and (C) linear PG (*lin*-PG).

Polymer code	[B(C ₆ F ₅) ₃] ₀ (mM)	[(<i>n</i> -Bu) ₃ N] ₀ (mM)	Temp. (°C)	Time	Conv. (%) ^b	$M_{\mathbf{n}}^{\ c}$	$M_{ m w}/M_{ m n}^{c}$	\mathbf{DB}^{d}
BCF-P1	3	0	25	15 min	94.7	2720	1.55	0.38
TBA-P2	0	12	25	72 h	55.0	n/d^{e}	n/d^e	n/d^e
TBA-P3	0	12	100	6 h	99.7	1620	1.53	0.67
TBA-P4	3	3	0	24 h	< 5	n/d^{e}	n/d^e	n/d^{e}
TBA-P5	3	3	25	24 h	< 5	n/d ^e	n/d^e	n/d^e
TBA-P6	3	3	80	24 h	99.8	1950	1.65	0.51
TBA-P7	3	3	100	24 h	99.8	1830	1.48	0.49
TBA-P8	3	6	0	24 h	< 5	n/d^e	n/d^{e}	n/d^e
TBA-P9	3	6	25	72 h	44.7	n/d^{e}	n/d^e	n/d^{e}
TBA-P10	3	6	80	6 h	93.3	1600	1.87	0.50
TBA-P11	3	6	100	3 h	96.4	1420	1.74	0.50
TBA-P12	3	12	0	72 h	49.6	n/d ^e	n/d^e	n/d^e
TBA-P13	3	12	25	72 h	97.4	1500	1.60	0.46
TBA-P14	3	12	80	6 h	99.8	1640	1.73	0.49
TBA-P15	3	12	100	6 h	99.7	1790	1.92	0.51

Table S1. Structural control of PGs via BCF catalyst with $(n-Bu)_3N$ as Lewis base ^a

 a [GD]₀ = 2500 mM in toluene. b Conversion was determined by ¹H NMR with tetralin as an internal standard. c Measured by size-exclusion chromatography calibrated with PEO standards in DMF (50 mM LiBr, 45 °C, flow rate 1.0 mL/min). d Degree of branching (DB) was calculated by inverse-gated ¹³C NMR using the following equation: (D + T)/(D + T + L) (D = dendritic unit; T = terminal unit; L = linear unit). e Not determined.

Polymer code	[B(C ₆ F ₅) ₃] ₀ (mM)	[Pyridine] ₀ (mM)	Temp. (°C)	Time	Conv. (%) ^b	$M_{ m n}{}^c$	$M_{\rm w}/M_{\rm n}^{\ c}$	\mathbf{DB}^{d}
BCF-P1	3	0	25	15 min	94.7	2720	1.55	0.38
Py-P2	0	6.0	0	24 h	< 1.0	n/d^e	n/d^e	n/d^e
Py-P3	0	6.0	100	24 h	99.5	1670	1.50	0.50
Py-P4	3	3.0	0	12 d	49.03	n/d^e	n/d^e	n/d^e
Py-P5	3	3.0	25	12 d	50.41	n/d^e	n/d^e	n/d^e
Py-P6	3	3.0	80	12 d	>99.9	3210	1.10	0.44
Py-P7	3	3.0	100	6 d	>99.9	1480	1.99	0.45
Py-P8	3	6.0	0	18 h	<1.0	n/d^e	n/d^e	n/d^e
Py-P9	3	6.0	25	6 d	91.6	1190	1.18	0.48
Py-P10	3	6.0	80	18 h	97.98	1430	1.60	0.49
Py-P11	3	6.0	100	18 h	92.3	1370	1.67	0.49

Table S2. Structural control of PGs using BCF catalyst with pyridine as Lewis base^a

^{*a*}[GD]₀ = 2500 mM in toluene. ^{*b*}Conversion was determined by ¹H NMR with tetralin as an internal standard. ^{*c*}Measured by size-exclusion chromatography calibrated with PEO standards in DMF (50 mM LiBr, 45 °C, flow rate 1.0 mL/min). ^{*d*}Degree of branching (DB) was calculated by inverse-gated ¹³C NMR with following equation: (D + T)/(D + T + L) (D = dendritic unit; T = terminal unit; L = linear unit). ^{*e*}Not determined.

Table S3.	Structural of	control of P	Gs using BO	CF catalyst	with (<i>n</i> -B	u) ₃ N as Le	ewis base	at different
polymeris	sation tempe	eratures <i>a</i> , <i>b</i>						

Region	Chemical shift (ppm)	BCF-P1	TBA-P3	TBA-P13	TBA-P14	TBA-P15
L _{1,3}	60.6–61.2	2.32	1.09	0.75	1.56	1.62
$2T_2$	61.2–61.8	0.83	0.91	1.54	0.00	1.57
T_1	63.0–63.3	1.41	2.62	3.89	4.82	6.13
$L_{1,3}, L_{1,4}$	68.5–69.7	2.60	4.36	6.54	7.57	8.35
2D, 2T ₁	70.4–72.0	5.47	9.54	12.91	16.15	21.01
2L _{1,4}	72.7–73.2	3.44	1.60	11.56	11.61	13.50
D	77.7–78.9	0.57	1.57	1.76	2.19	2.48
L _{1,3}	79.7-80.4	1.00	1.00	1.00	1.00	1.00
T_2	81.5-82.2	0.42	0.00	0.00	0.00	0.00
Structur	re units $(\%)^c$					
D	units	9	26	15	15	15
L	units	63	31	53	51	49
	$(L_{1,3} units)$	(36)	(18)	(6)	(11)	(9)
	$(L_{1,4} units)$		(13)	(47)	(40)	(40)
Т	T units		43	32	34	36
	$(T_1 units)$		(43)	(32)	(34)	(36)
	$(T_2 units)$	(6)	(0)	(0)	(0)	(0)
Degree of	f Branching ^d	0.37	0.69	0.47	0.49	0.51

^{*a*}[GD]₀ = 2500 mM, [B(C₆F₅)₃]₀ = 3 mM or/and [TBA]₀ = 12 mM in toluene at 25, 80, and 100 °C. ^{*b*}Obtained by inverse gated ¹³C NMR. ^{*c*}The structure units (%) were calculated from the following equation: integration ratio of each structure region / $(D + T + L) \times 100$. ^{*d*}Degree of branching (DB) = (D + T)/(D + T + L).

Region	Chemical shift (ppm)	BCF-P1	TBA-P3	TBA-P7	TBA-P11	TBA-P15
L _{1,3}	60.6–61.2	2.32	1.09	1.89	1.56	1.62
$2T_2$	61.2–61.8	0.83	0.91	1.44	1.64	1.57
T_1	63.0–63.3	1.41	2.62	9.49	6.88	6.13
$L_{1,3}, L_{1,4}$	68.5–69.7	2.60	4.36	11.52	10.11	8.35
2D, 2T ₁	70.4–72.0	5.47	9.54	23.34	23.30	21.01
2L _{1,4}	72.7–73.2	3.44	1.60	20.74	16.01	13.50
D	77.7–78.9	0.57	1.57	2.22	2.83	2.48
L _{1,3}	79.7-80.4	1.00	1.00	1.00	1.00	1.00
T_2	81.5-82.2	0.42	0.00	0.05	0.00	0.00
Structur	re units $(\%)^c$					
D	units	9	26	9	15	15
L	units	63	31	51	49	49
	$(L_{1,3} units)$	(36)	(18)	(8)	(8)	(9)
	$(L_{1,4} units)$		(13)	(43)	(41)	(40)
T units		28	43	40	36	36
	$(T_1 units)$		(43)	(40)	(36)	(36)
	$(T_2 units)$	(6)	(0)	(0)	(0)	(0)
Degree o	f Branching ^d	0.37	0.69	0.49	0.50	0.51

Table S4. Structural control of PGs via BCF with different concentration of $(n-Bu)_3 N^{a, b}$

^{*a*}[GD]₀ = 2500 mM, [B(C₆F₅)₃]₀ = 3 mM or/and [TBA]₀ = 3, 6, and 12 mM in toluene at 100 °C. ^{*b*}Obtained by inverse-gated ¹³C NMR. ^{*c*}The structure units (%) were calculated from the following equation: integration ratio of each structure region / $(D + T + L) \times 100$. ^{*d*}Degree of branching (DB) = (D + T)/(D + T + L).

18.69

15.55

1.47

1.00

0.00

9

54

(8)

(46)

37

64.02

55.84

3.57

1.00

0.00

6

52

(2)

(50)

42

polymerisation temperatures <i>a</i> , <i>b</i>								
Region	Chemical shift (ppm)	BCF-P1	Py-P3	Py-P9	Py-P10	Py-P11		
L _{1,3}	60.6–61.2	2.32	0.70	0.88	1.37	1.17		
$2T_2$	61.2–61.8	0.83	0.58	0.00	0.86	2.82		
T_1	63.0–63.3	1.41	1.52	6.18	6.27	23.78		
$L_{1,3}, L_{1,4}$	68.5–69.7	2.60	2.37	9.56	8.47	20.30		

5.47

3.44

0.57

1.00

0.42

9

63

(36)

(27)

28

5.01

3.27

0.85

1.00

0.00

18

50

(15)

(35)

32

17.25

19.02

1.90

1.00

0.00

10

56

(5)

(51)

34

2D, 2T₁

 $2L_{1,4}$

D

L_{1,3} T_2

70.4-72.0

72.7-73.2

77.7-78.9

79.7-80.4

81.5-82.2

Structure units $(\%)^c$

D units

L units

T units

 $(L_{1,3} units)$

 $(L_{1,4} units)$

Table S5. Structural control of PGs using BCF catalyst with pyridine as Lewis base at different

$(T_1 units)$	(22)	(32)	(34)	(37)	(42)		
$(T_2 units)$	(6)	(0)	(0)	(0)	(0)		
Degree of Branching ^d	0.37	0.50	0.44	0.46	0.48		
${}^{a}[GD]_{0} = 2500 \text{ mM}, [B(C_{6}F_{5})_{3}]_{0} = 3 \text{ mM or/and [pyridine]}_{0} = 6 \text{ mM in toluene at } 25, 80, and$							
100 °C. ^b Obtained by inverse-gated ¹³ C NMR. ^c The structure units (%) were calculated from the							

following equation: integration ratio of each structure region / $(D + T + L) \times 100$. ^dDegree of branching (DB) = (D + T)/(D + T + L).

Region	Chemical shift (ppm)	BCF-P1	Py-P3	Py-P7	Py-P11
L _{1,3}	60.6–61.2	2.32	0.70	2.15	1.17
$2T_2$	61.2–61.8	0.83	0.58	0.89	2.82
T_1	63.0–63.3	1.41	1.52	4.08	23.78
$L_{1,3}, L_{1,4}$	68.5–69.7	2.60	2.37	4.05	20.30
2D, 2T ₁	70.4–72.0	5.47	5.01	9.03	64.02
2L _{1,4}	72.7–73.2	3.44	3.27	7.94	55.84
D	77.7–78.9	0.57	0.85	0.40	3.57
L _{1,3}	79.7-80.4	1.00	1.00	1.00	1.00
T_2	81.5-82.2	0.42	0.00	0.60	0.00
Structur	re units $(\%)^c$				
D	units	9	18	4	6
L	units	63	50	54	52
	$(L_{1,3} units)$	(36)	(15)	(19)	(2)
	$(L_{1,4} Units)$		(35)	(35)	(50)
Т	T units		32	42	42
$(T_1 units)$		(22)	(32)	(37)	(42)
	$(T_2 units)$	(6)	(0)	(5)	(0)
Degree o	f Branching ^d	0.37	0.50	0.45	0.48

Table S6. Structural control of PGDs using BCF with different concentration of pyridine *a*, *b*

^{*a*}[GD]₀ = 2500 mM, [B(C₆F₅)₃]₀ = 3 mM or/and [pyridine]₀ = 3 and 6 mM in toluene at 100 °C. ^{*b*}Obtained by inverse-gated ¹³C NMR. ^{*c*}The structure units (%) were calculated from the following equation: integration ratio of each structure region / $(D + T + L) \times 100$. ^{*d*}Degree of branching (DB) = (D + T)/(D + T + L).