ELECTRONIC SUPPLEMENTARY INFORMATION

Facile Synthesis, Structure and Properties of CO₂-sourced Poly(thioether-*co*-carbonate)s Containing Acetyl Pendants via Thio-Ene Click Polymerization

Yi-Feng Zhang,^[a] Wei-Ming Lai,^[b] Sheng Xie,^[b] Hui Zhou^{*[a]} and Xiao-Bing Lu^[a]

[a] *State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.

^[b] State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China

E-mail: <u>zhouhui@dlut.edu.cn</u>

1. Synthesis of polymeric monomers	
2. Optimization of polymerization conditions	S3
3. Synthesis of polymers via thiol-ene click reaction	S4
4. Degradation reaction of monomer 4 via cascade reaction	S8
5. Degradation reaction of polymers P-4b5a via cascade reaction	S9
6. GPC curves of the polymers P45 and degradable polymer D-P45	S11
8. FT-IR spectra	S16
8. NMR spectra	S19
9. ESI MS spectra	S34
10. Fluorescence spectra	S36
11. Transient photoluminescence decay curve	\$37
12. References	S39

1. Synthesis of polymeric monomers

4-Methyl-4-vinyl-5-methylene-1,3-dioxolan-2-one (2) was synthesized by the carboxylative cyclization of propargylic alcohol (1) with CO_2 according to previous literatures.¹

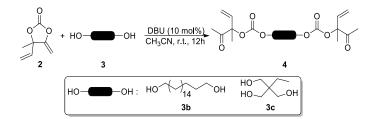


Figure S1. Synthesis of 4-methyl-4-vinyl-5-methylene-1,3-dioxolan-2-one (2) with diol 3.

4-Vinyl substituted α CC **2** (10 mmol), 1,18-octadecanediol (**3b**, 5 mmol) and CH₃CN (20.0 mL) were added successively into a 100 mL flask equipped with a magnetic stirrer. Then 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.5 mmol, 10 mol%) was introduced and the mixture was stirred for 12 h at room temperature. After the reaction was over, the solvent was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford monomer **4b** (white solid, isolated yield: 75%). ¹H NMR (**600 MHz, CDCl**₃) δ 6.01 (dd, J = 17.4, 11.0 Hz, 2H), 5.44 (d, J = 17.4 Hz, 2H), 5.30 (d, J = 11.0 Hz, 2H), 4.14 (d, J = 6.7, 2.0 Hz, 4H), 2.14 (s, 6H), 1.70 – 1.64 (m, 4H), 1.60 (s, 6H), 1.38 – 1.21 (m, 28H). ¹³C NMR (**150 MHz, CDCl**₃) δ 204.2, 153.9, 135.9, 117.0, 87.4, 77.3, 77.1, 76.9, 68.7, 29.8, 29.7, 29.7, 29.6, 29.6, 29.3, 28.7, 25.7, 23.7, 21.3. **IR(KBr)**: v=3432, 2924, 2853, 1745(C=O), 1728(C=O), 1677, 1633, 1462, 1391, 1370, 1356, 1275, 1181, 1123, 1050, 993, 932, 790, 617 cm⁻¹. **HRMS**: m/z calculated for C₃₂H₅₄O₈[M+Na⁺]:589.3716; found 589.3690.

4-Vinyl substituted α CC **2** (15 mmol), trimethylolpropane (**3c**, 5 mmol) and CH₃CN (20.0 mL) were added successively into a 100 mL flask equipped with a magnetic stirrer. Then 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.5 mmol, 10 mol%) was introduced and the mixture was stirred for 12 h at room temperature. After the reaction was over, the solvent was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford monomer **4c** (coreless oil, isolated yield: 71%). **¹H NMR (600 MHz, CDCl**₃) δ 5.98 (dd, J = 17.4, 11.0 Hz, 3H), 5.40 (d, J = 17.4 Hz, 3H), 5.29 (d, J = 11.0 Hz, 3H), 4.12 (s, 7H), 2.10 (s, 9H), 1.58 (s, 9H), 1.52 (q, J = 7.5 Hz, 2H), 0.91 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 203.6, 153.5, 135.6, 117.3, 87.8, 77.3, 77.1, 76.9, 67.0, 41.5, 23.7, 22.4, 21.1, 7.2. IR(KBr):

v=3435, 2973, 2943, 1747(C=O), 1726(C=O), 1639, 1458, 1393, 1356, 1267, 1180, 1102, 1081, 988, 937, 904, 791, 661 cm⁻¹. **HRMS**: m/z calculated for C₂₇H₃₈O₁₂[M+Na⁺]:577.2261; found 577.2258.

2. Optimization of polymerization conditions

8

P4a5a

NMP

To a Schlenk tube, 1,3-dimercaptopropane (**5a**, 1.0 mmol), **4a** (1.0 mmol), [Ir (4,4'-'Bu₂bpy)(bpy)₂]PF₆ ([**Ir**], 0.05 mmol, 5.0 mol%), *p*-Toluidine (0.05 mmol, 5.0 mol%) were added, following by the addition of 1-methyl-2-pyrrolidinone (NMP) (1.0 mL). The Schlenk tube was irradiated with a 450 nm LED for 24 h. After that, a small amount of the crude product was taken to determine monomer conversion by ¹H NMR spectrum. The remaining product was repeatedly dissolved in CH₂Cl₂, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at 35 °C for 24 h to afford polymer **P4a5a** (light yellow sticky liquid, 84% yield.).

	0 0 4a	+ HS	SH Initiator	^s ↓ 0 ↓ 0 ↓ 0	0 0 0 0	↓ n O
Entry	Polymer	Solvent	Initiator (5 mol%)	$M_{ m n}$ (g/mol) ^e	Conv. (%) ^f	Ðe
1 ^a	P4a5a	THF	DMPA	5900	>99%	2.12
2 ^b	P4a5a	THF	[Ir]+ p-Toluidine	7800	90%	1.46
3	P4a5a	DMF	[Ir]+ <i>p</i> -Toluidine	5100	>99%	1.37
4	P4a5a	NMP	[Ir]+ <i>p</i> -Toluidine	7800	>99%	1.37
5 ^b	P4a5a	NMP	[Ir]+ <i>p</i> -Toluidine	10400	>99%	1.43
6 ^c	P4a5a	NMP	[Ir]+ <i>p</i> -Toluidined	5300	>99%	1.45
7 ^d	P4a5a	NMP	[Ir]+ <i>p</i> -Toluidinee	4800	89%	1.32

Table S1. Optimization of reaction conditions for the synthesis of polymers.

[Ir]

4500

>99%

1.48

[[]a]. 365 nm. [b]. 24 h. [c].Initiator = 10 mol%. [d]. Initiator = 1 mol%. [e]. Molecular weights were measured by GPC.[f]. Conversions was determined by ¹H-NMR spectroscopy on the crude samples. [Ir] = [Ir $(4,4'-Bu_2-bpy)(bpy)_2$]PF₆ (^{*t*}Bu: *tert*-butyl). 2,2-Dimethoxy-2-phenyl acetophenone (DMPA).

3. Synthesis of polymers via thiol-ene click reaction

3.1 Synthesis of polymer P4a5

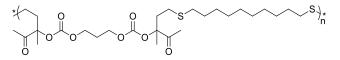



Figure S2. Synthesis of P4a5 from 4a and dithiol 5.

To a Schlenk tube, dithiol (**5**, 1.0 mmol), **4a** (1.0 mmol), [Ir $(4,4'-{}^{1}Bu_{2}-bpy)(bpy)_{2}]PF_{6}$ ([**Ir**], 0.05 mmol, 5.0 mol%), *p*-toluidine (0.05 mmol, 5.0 mol%) were added, following by the addition of 1.0 mL of 1-methyl-2-pyrrolidinone (NMP). The Schlenk tube was irradiated with a 450 nm LED for 24 h. After that, a small amount of the crude product was taken to determine monomer conversion by 1 H NMR spectrum. The remaining product was repeatedly dissolved in CH₂Cl₂, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at 35 °C for 24 h to afford polymer **P4a5**.

$$\overset{*}{\underset{\mathsf{M}}{\overset{\mathsf{O}}}} \circ \overset{\mathsf{O}}{\underset{\mathsf{O}}{\overset{\mathsf{O}}}} \circ \overset{\mathsf{O}}{\underset{\mathsf{O}}} \circ \overset{\mathsf{O}}{\underset{\mathsf{O}}} \circ \overset{\mathsf{O}}}{\overset{\mathsf{O}}} \circ \overset{\mathsf{O}}{\underset{\mathsf{O}}} \circ \overset{\mathsf{O}}{\underset{\mathsf{O}}} \circ \overset{\mathsf{O}}}{$$

P4a5b (light yellow sticky liquid. 82% yield.) *M*_n = 9300 g/mol. PDI = 1.43. ¹H NMR (600 MHz, CDCl₃) δ 4.23 (t, J = 6.1 Hz, 4H), 2.55 – 2.39 (m, 8H), 2.25 – 2.11 (m, 8H), 2.03 (m, 4H), 1.63 – 1.49 (m, 10H), 1.37 (s, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 205.9, 153.7, 87.4, 77.3, 77.1, 76.9, 64.5, 36.9, 32.2, 29.4, 28.5, 28.2, 25.8, 24.4, 20.5. IR(KBr): v=2927, 2854, 1746(C=O), 1721(C=O), 1461, 1379, 1360, 1331, 1268, 1165, 1102, 1072, 1032, 913, 791 cm⁻¹.

P4a5c (light yellow sticky liquid. 87% yield.) *M*_n = 14700 g/mol. PDI = 1.37. ¹H NMR (600 MHz, CDCl₃) δ 4.23 (t, J = 6.1 Hz, 4H), 2.58 – 2.38 (m, 8H), 2.23 – 2.12 (m, 8H), 2.03 (m, 4H), 1.54 (d, J = 13.5 Hz, 10H), 1.35 (s, 4H), 1.26 (s, 10H). ¹³C NMR (150 MHz, CDCl₃) δ 205.9, 153.7, 87.5, 77.4, 77.1, 76.8, 64.5, 36.9, 32.3, 29.6, 29.6, 29.3, 29.0, 28.2, 25.8, 24.4, 20.5. IR(KBr):

v=3433, 2925, 2853, 1743(C=O), 1715(C=O), 1459, 1399, 1358, 1332, 1265, 1165, 1102, 1071,914,871,792 cm⁻¹.

3.2 Synthesis of polymer P4b5

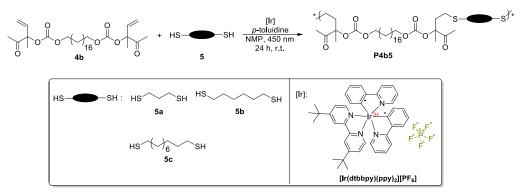
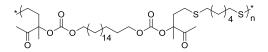



Figure S3. Synthesis of P4b5 from4b and dithiol 5.

To a Schlenk tube, dithiol (5, 1.0 mmol), 4b (1.0 mmol), [Ir (4,4'-'Bu₂-bpy)(bpy)₂]PF₆ ([Ir], 0.05 mmol, 5.0 mol%), *p*-toluidine (0.05 mmol, 5.0 mol%) were added, following by the addition of 1.0 mL of 1-methyl-2-pyrrolidinone (NMP). The Schlenk tube was irradiated with a 450 nm LED for 24 h. After that, a small amount of the crude product was taken to determine monomer conversion by ¹H NMR spectrum. The remaining product was repeatedly dissolved in CH₂Cl₂, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at 35 °C for 24 h to afford polymer P4b5.

P4b5a (light yellow solid. 85% yield.) $M_n = 12500$ g/mol. PDI = 1.14. ¹H NMR (600 MHz, CDCl₃) δ 4.12 (t, J = 6.8 Hz, 4H), 2.60 (dd, J = 13.8, 6.8 Hz, 4H), 2.50 (m, 4H), 2.23 – 2.11 (m, 10H), 2.03 (m, 2H), 1.73 – 1.62 (m, 4H), 1.54 (s, 6H), 1.25 (s, 28H). ¹³C NMR (150 MHz, CDCl₃) δ 206.2, 153.9, 87.2, 77.3, 77.1, 76.9, 68.6, 36.8, 32.2, 29.8, 29.7, 29.7, 29.6, 29.4, 29.3, 28.76 28.5, 25.8, 25.7, 24.3, 20.4. **IR(KBr)**: v=3430, 2927, 2853, 1746(C=O), 1720(C=O), 1463, 1394, 1356, 1276, 1166, 1101, 1075, 915, 793 cm⁻¹.

P4b5b (light yellow solid. 81% yield.) $M_n = 16700$ g/mol. PDI = 1.35. ¹H NMR (600 MHz, CDCl₃) δ 4.12 (t, J = 6.4 Hz, 4H), 2.73 – 2.60 (m, 2H), 2.55 – 2.42 (m, 6H), 2.17 (s, 6H), 2.08 –

1.95 (m, 2H), 1.72 – 1.62 (m, 6H), 1.62 – 1.51 (m, 10H), 1.24 (s, 32H). ¹³C NMR (150 MHz, CDCl₃) δ 206.2, 153.9, 87.1, 77.3, 77.1, 76.9, 68.7, 36.8, 32.2, 29.8, 29.7, 29.7, 29.6, 29.4, 29.3, 28.7, 28.5, 25.8, 25.7, 24.3, 20.4. **IR(KBr)**: ν=3425, 2923, 2853, 1743(C=O), 1723(C=O), 1465, 1398, 1358, 1277, 1168, 1130, 1104, 1077, 1029, 917, 792 cm⁻¹.

P4b5c (light yellow solid. 89% yield.) $M_n = 23900$ g/mol. PDI = 2.15. ¹H NMR (600 MHz, CDCl₃) δ 4.12 (t, J = 6.8 Hz, 4H), 2.59 – 2.39 (m, 8H), 2.24 – 2.10 (m, 8H), 2.03 (m, 2H), 1.67 (m, 4H), 1.57 – 1.52 (m, 10H), 1.38 – 1.30 (m, 8H), 1.26 (d, J = 6.5 Hz, 32H), 1.24 – 1.24 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 206.3, 153.9, 87.1, 68.7, 36.8, 32.3, 29.8, 29.7, 29.6, 29.6, 29.3, 29.0, 28.7, 25.8, 25.7, 24.3, 20.4. **IR(KBr)**: v=3428, 2922, 2853, 1744(C=O), 1724(C=O), 1463, 1393, 1356, 1276, 1165, 1073, 916, 793 cm⁻¹.

3.3 Synthesis of polymer P4c5

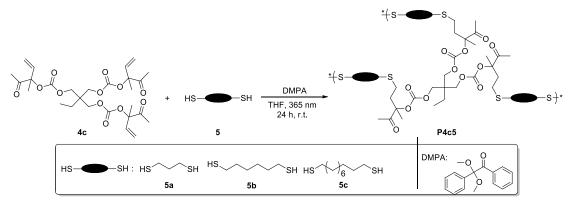
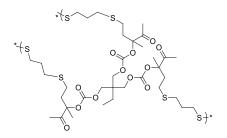
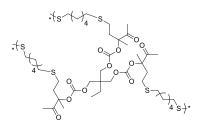
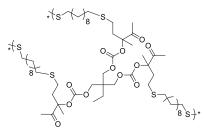




Figure S4. Synthesis of P4c5 from 4c and dithiol 5.


To a Schlenk tube, dithiol (5, 1.5 mmol), 4c (1.0 mmol) and benzoin dimethyl ether (DMPA 0.05 mmol, 5.0 mol%) were added, following by the addition of THF (1.0 mL). The Schlenk tube was irradiated with a 365 nm LED for 24 h. After that, a small amount of the crude product was taken to determine monomer conversion by ¹H NMR spectrum. The remaining product was repeatedly dissolved in CH₂Cl₂, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at 35 °C for 24 h to afford polymer **P4c5**.

P4c5a (colorless sticky liquid. 86% yield.) $M_n = 6600$ g/mol. PDI = 1.83. ¹H NMR (600 MHz, CDCl₃) δ 4.12 (s, 6H), 2.69 – 2.56 (m, 8H), 2.56 – 2.41 (m, 6H), 2.17 (d, J = 1.2 Hz, 9H), 2.04 (m, 4H), 1.85 (m, 4H), 1.56 (s, 9H), 1.56 (s, 8H), 1.54 (s, 2H), 0.94 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 205.7, 153.6, 87.6, 77.3, 77.1, 76.9, 67.0, 41.6, 36.9, 36.7, 33.3, 31.0, 30.5, 29.0, 25.8, 25.7, 24.5, 23.5, 22.4, 20.5, 20.5, 7.4. IR(KBr): v=3453, 2972, 2936, 1746 (C=O), 1721 (C=O), 1461, 1380, 1358, 1267, 1165, 1102, 1074, 963, 918, 788 cm⁻¹.

P4c5b (colorless sticky liquid. 82% yield.) *M*_n = 6300 g/mol. PDI = 2.27. ¹H NMR (600 MHz, CDCl₃) δ 4.11 (s, 6H), 2.60 – 2.37 (m, 14H), 2.17 (s, 9H), 2.09 – 1.94 (m, 3H), 1.74 – 1.45 (m, 26H), 1.47 – 1.34 (m, 10H), 0.93 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 205.7, 153.6, 87.6, 77.3, 77.1, 76.9, 67.0, 41.6, 36.9, 36.8, 33.9, 32.3, 32.2, 29.4, 29.4, 28.6, 28.3, 28.0, 25.85 25.8, 24.6, 24.4, 22.4, 20.4, 20.4, 7.4. **IR(KBr)**: v=3474, 2929, 2855, 1804, 1746 (C=O), 1721 (C=O), 1461, 1395, 1357, 1266, 1164, 1102, 1074, 962, 917, 789, 734 cm⁻¹.

P4c5c (colorless sticky liquid. 85% yield.) *M*_n = 6800 g/mol. PDI = 1.85. ¹H NMR (600 MHz, CDCl₃) δ 4.11 (s, 6H), 2.56 – 2.39 (m, 14H), 2.16 (s, 9H), 2.09 – 1.95 (m, 3H), 1.60 (d, J = 5.1 Hz, 6H), 1.58 – 1.48 (m, 18H), 1.43 – 1.20 (m, 31H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 205.7, 153.6, 87.6, 77.4, 77.1, 76.8, 66.9, 41.6, 36.9, 34.1, 32.3, 32.3, 29.6, 29.6, 29.5,

29.3, 29.3, 29.1, 29.0, 28.9, 28.4, 25.8, 24.7, 24.3, 22.4, 20.4, 7.4. **IR(KBr)**: v=3461, 2925, 2853, 1746(C=O), 1723 (C=O), 1462, 1391, 1357, 1266, 1165, 1072, 962, 917, 788 cm⁻¹.

4. Degradation of monomers 4 via cascade reaction

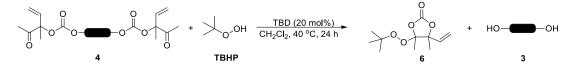
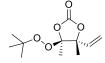



Figure S5. Degradation reaction of monomers 4.

To a 2 mL high-pressure tube, monomer (**4**, 1.0 mmol), *tert*-butyl hydroperoxide (5.5 mmol/mL in decane) (TBHP, 2.0 mmol, 2.0 equiv.), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, 20 mol%) and CH_2Cl_2 (0.5 mL) were added. Then the mixture was stirred for 24 h at 40 °C. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation. Two isomers (*E* and *Z*) could be purified and isolated by flash column chromatograph as a colorless oil.

(*E*)-Isomer **6a** (colorless oil, 48% yield). ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 5.79 (dd, *J* = 17.1, 10.8 Hz, 1H), 5.42 (d, *J* = 17.1 Hz, 1H), 5.29 (d, *J* = 10.8 Hz, 1H), 1.62 (s, 3H), 1.51 (s, 3H), 1.27 (s, 9H). ¹³**C NMR** (**150 MHz**, **CDCl**₃) δ 153.4, 136.4, 116.1, 110.0, 87.8, 82.3, 26.4, 18.3, 17.9. **IR(KBr)**: v=2987, 1813(C=O), 1366, 1265, 1195, 1179, 1158, 1141, 1115, 1067, 1025, 1009, 932, 891, 863, 767 cm⁻¹. **HRMS**: m/z calculated for C₁₁H₁₈O₅ [M+NH₄⁺]: 248.1498; found 248.1492.

(Z)-Isomer **6b** (colorless oil, 48% yield). ¹**H** NMR (**600** MHz, CDCl₃) δ 6.15 (dd, J = 17.5, 11.1 Hz, 1H), 5.43 (d, J = 17.5 Hz, 1H), 5.35 (d, J = 11.1 Hz, 1H), 1.57 (s, 3H), 1.49 (s, 3H), 1.24 (s, 9H). ¹³C NMR (**150** MHz, CDCl₃) δ 153.3, 133.3, 117.9, 110.3, 88.0, 82.1, 26.4, 22.7, 16.6. **IR(KBr)**: v=2984, 1812(C=O), 1386, 1366, 1263, 1219, 1193, 1108, 1058, 1024, 935 cm⁻¹. **HRMS**: m/z calculated for C₁₁H₁₈O₅ [M+NH₄⁺]: 248.1498; found 248.1493. All the resonances in ¹H and ¹³C NMR spectra were in good agreement with literature values.²

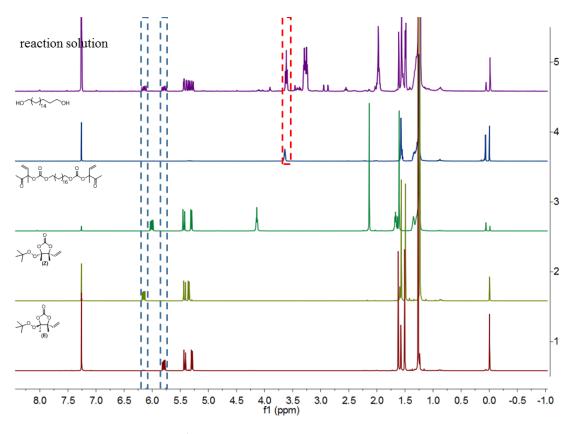


Figure S6. Stacked ¹H NMR spectra of the selective depolymerisation of 4b.

5. Degradation of polymer P-4b5a via cascade reaction

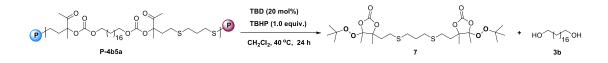


Figure S7. Degradation of polymer P-4b5a.

5.1 Degradation of P4b5a via cascade reaction

To a 2 mL high-pressure tube, **P4b5a** (175 mg, 0.254 mmol,), *tert*-butyl hydroperoxide (5.5 mmol/mL in decane, 0.508 mmol, 45 mg, 0.1 mL), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, 0.05 mmol, 20 mol%, 6,96 mg) and CH₂Cl₂ (0.5 mL) were added. Then the mixture was stirred for 24 h at 40 °C. The reaction solution was cooled to room temperature. The solution was then evaporated to a minimum amount by evaporation, dissolved with a small amount of CH₂Cl₂ precipitated in hexane, and the product was isolated by centrifuge. Repeated the above steps twice, and vacuum-dried to obtain **3b** (white solid, 65% yield). ¹H NMR (600 MHz, CDCl₃) δ 3.64 (d, *J* = 3.6 Hz, 4H), 1.60 – 1.53 (m, 4H), 1.36 – 1.23 (m, 28H), 1.21 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 62.8, 32.8,

29.4, 25.6. All the resonances in ¹H and ¹³C NMR spectra were in good agreement with literature values.³ Then the filtrate was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford **7** (colorless oil, 13% yield). ¹H NMR (**400 MHz, CDCl**₃) δ 2.66 (t, *J* = 7.0 Hz, 4H), 2.64 – 2.56 (m, 4H), 2.38 (m, 2H), 2.18 – 1.94 (m, 4H), 1.94 – 1.84 (m, 2H), 1.56 (s, 6H), 1.40 (s, 6H), 1.26 (s, 19H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 110.2, 87.9, 82.3, 77.4, 77.1, 76.8, 33.5, 30.9, 29.0, 26.5, 26.4, 22.5, 17.2. IR(KBr): v=2924, 1809(C=O), 1630, 1401, 1366, 1248, 1189, 1146, 1045, 1006, 963, 927, 892, 771.05, 729, 519 cm⁻¹. HRMS: m/z calculated for C₂₅H₄₄O₁₀S₂ [M+Na⁺]: 591.2274; found 591.2283.

5.2 The depolymerization reaction of P4b5a were detected by means of In-situ FT-IR

To a 10 mL flask, equipped with a magnetic stir bar, was charged with **P4b5a** (175 mg, 0.254 mmol), *tert*-butyl hydroperoxide (5.5 mmol/mL in decane, 0.1 mL, 2.0 equiv.), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, 0.05 mmol, 20 mol%) and CH₂Cl₂ (0.5 mL), then in-situ FT-IR probe was equipped to check the IR signals. Then the mixture was stirred for 24 h at 40 °C.

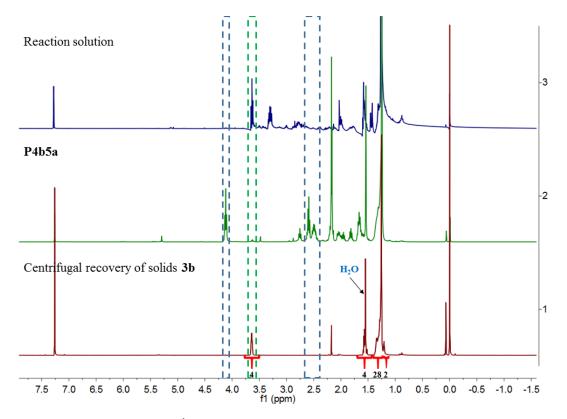


Figure S8. Stacked ¹H NMR spectra of the selective depolymerization of P4b5a.

Entry	Polymer	$M_{\rm n}({ m g/mol})^{\rm a}$	D-Polymer	$M_{\rm n}'({ m g/mol})^{\rm a}$
1	P4a5a	10400	D-P4a5a	298
2	P4a5b	9300	D-P4a5b	311
3	P4a5c	14700	D-P4a5c	626
4	P4b5a	12500	D-P4b5a	1100
5	P4b5b	16700	D-P4b5b	1300
6	P4b5c	23900	D-P4b5c	979
7	P4c5a	6600	D-P4c5a	417
8	P4c5b	6300	D-P4c5b	339
9	P4c5c	6800	D-P4c5c	373

6. GPC curves of the polymers P45 and degradable polymer D-P45

Table S2. GPC comparison of polymers P45 and degradable polymers D-P45.

[a]. Number average molecular weights (M_n) were determined by gel permeation chromatography in THF, calibrated with polystyrene.

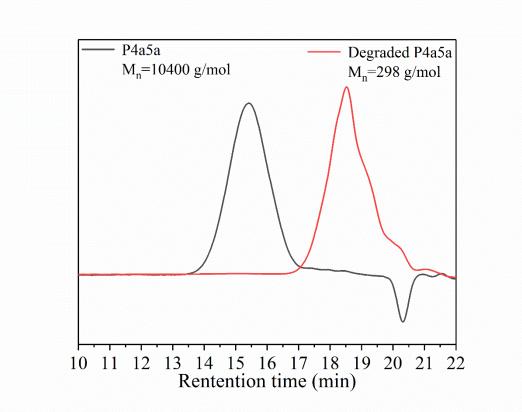


Figure S9. GPC curves of polymer P-4a5a and degraded polymer D-P4a5a.

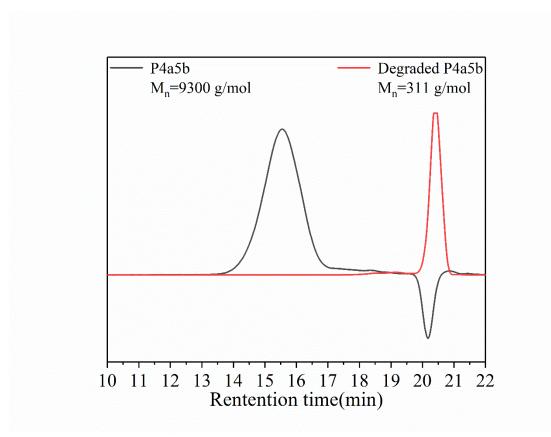


Figure S10. GPC curves of polymer P-4a5b and degraded polymer D-P4a5b.

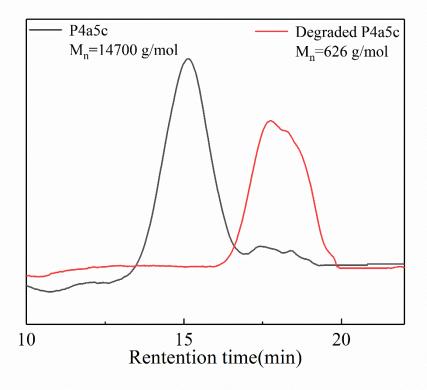


Figure S11. GPC curves of polymer P-4a5c and degraded polymer D-P4a5c.

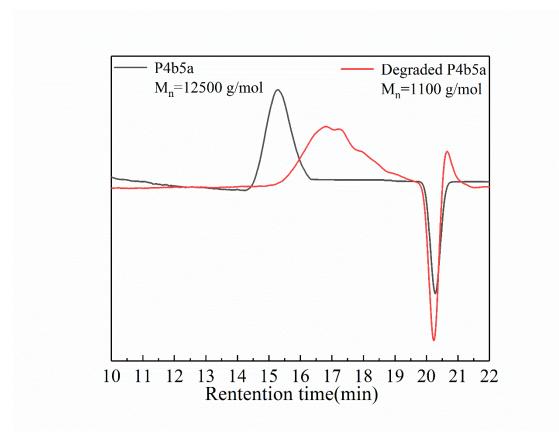


Figure S12. GPC curves of polymer P-4b5a and degraded polymer D-P4b5a.

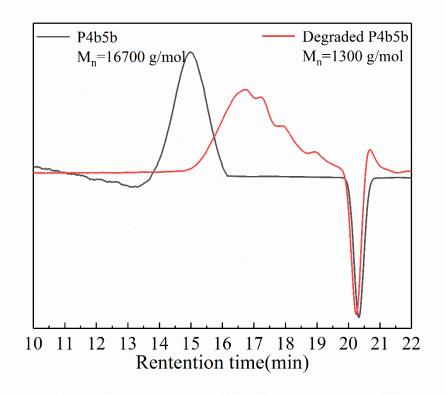


Figure S13. GPC curves of polymer P-4b5b and degraded polymer D-P4b5b.

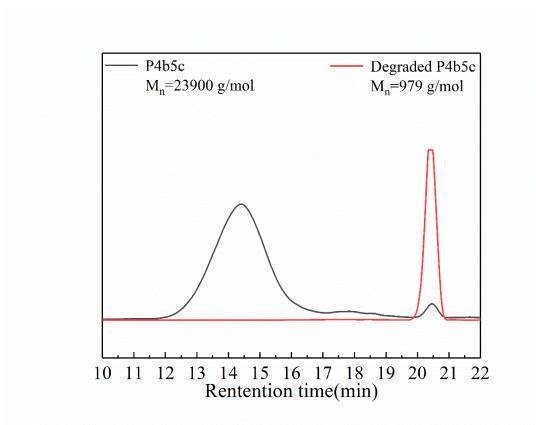


Figure S14. GPC curves of polymer P-4b5c and degraded polymer D-P4b5c.

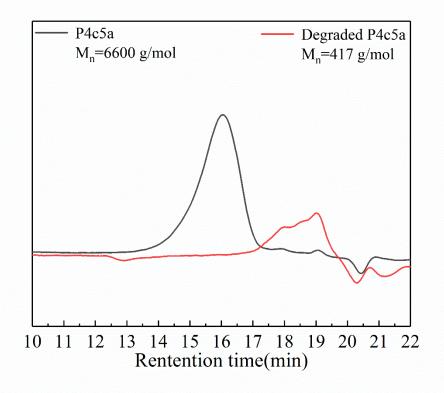


Figure S15. GPC curves of polymer P-4c5a and degraded polymer D-P4c5a.

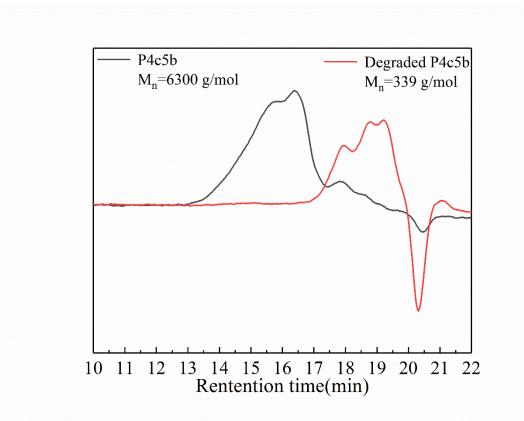


Figure S16. GPC curves of polymer P-4c5b and degraded polymer D-P4c5b.

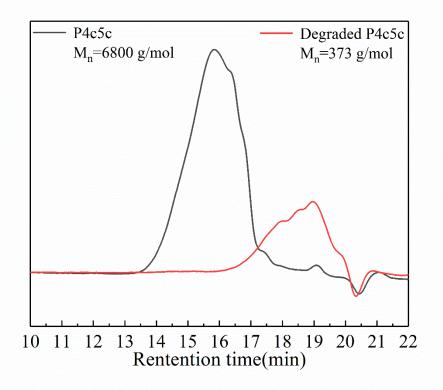
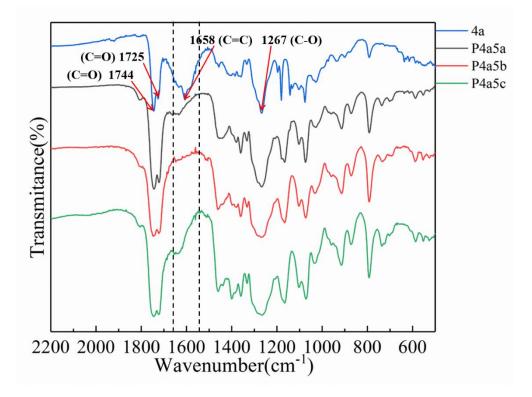
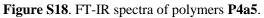




Figure S17. GPC curves of polymer P-4c5c and degraded polymer D-P4c5c.

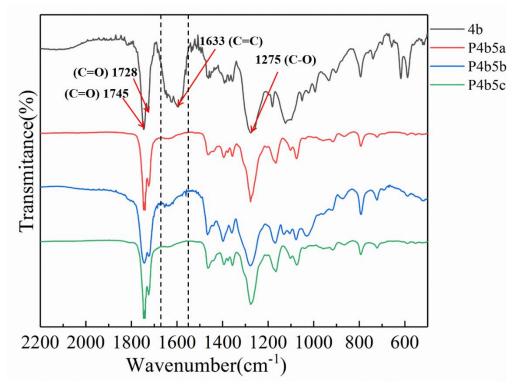


Figure S19. FT-IR spectra of polymers P4b5.

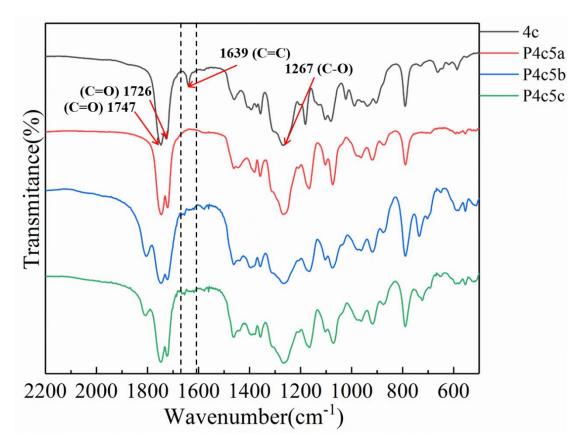


Figure S20. FT-IR spectra of polymers P4c5.

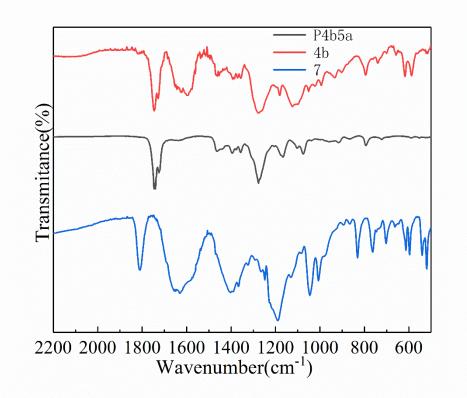


Figure S21. FT-IR spectra of P4b5a, 4b and 7.

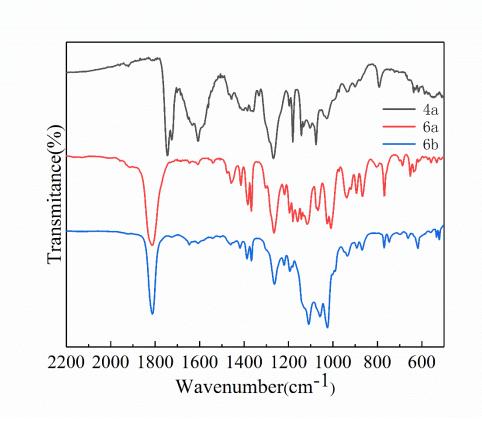


Figure S22. FT-IR spectra of 4a, 6a and 6b.

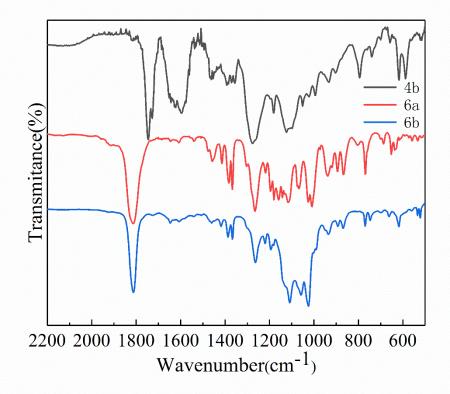
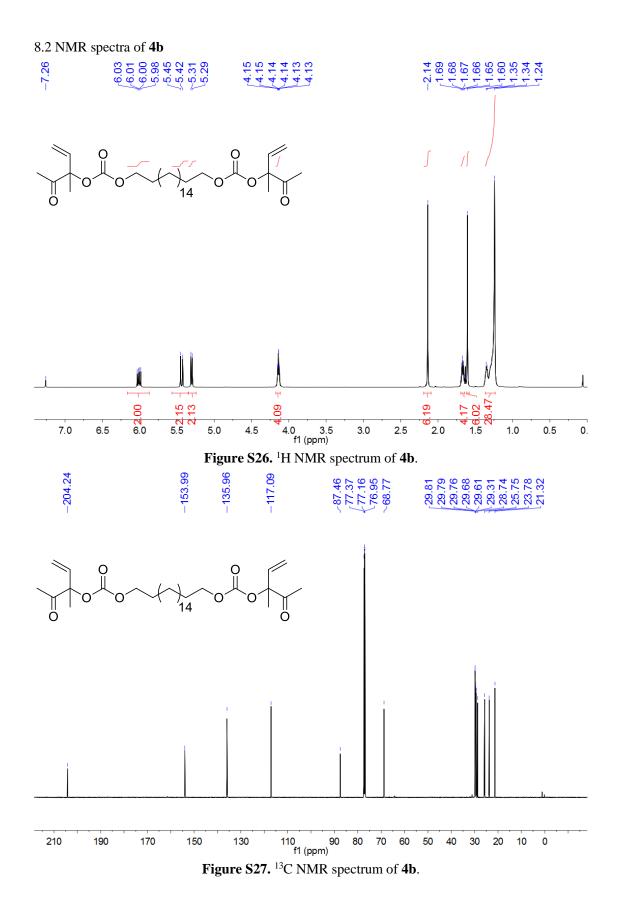



Figure S23. FT-IR spectra of 4b, 6a and 6b.

8. NMR Spectra

Figure S25. ¹³C NMR spectrum of 4a.

S20

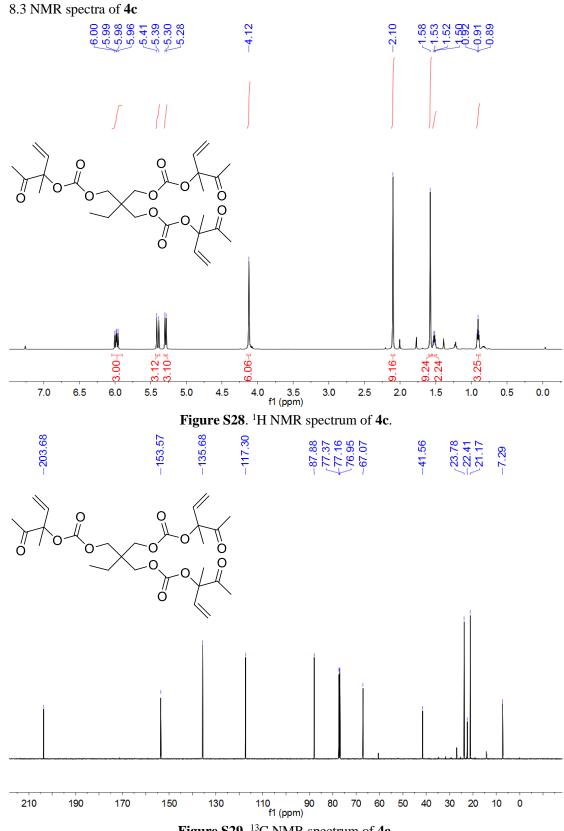


Figure S29. ¹³C NMR spectrum of 4c.

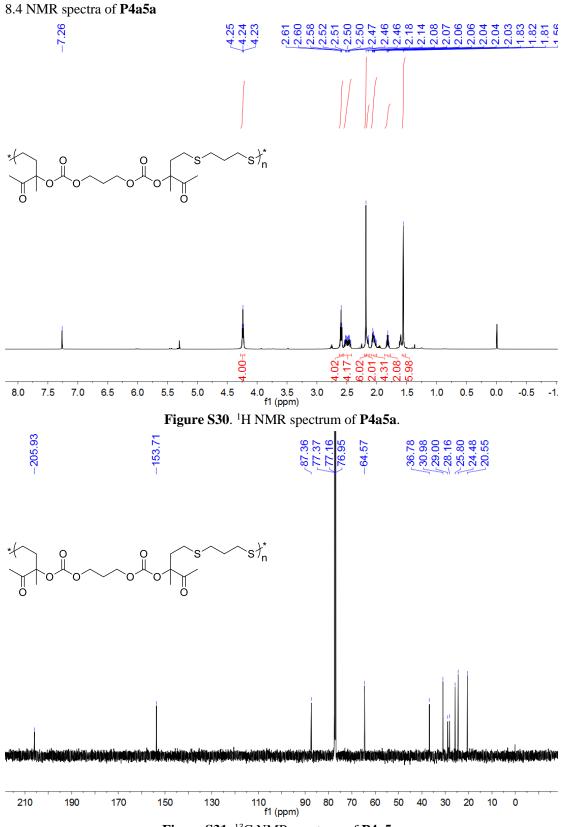


Figure S31. ¹³C NMR spectrum of P4a5a.

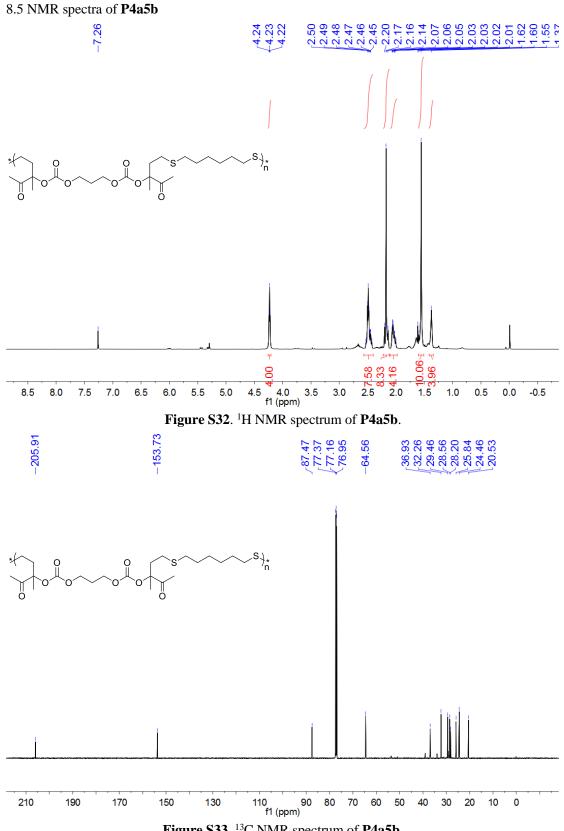


Figure S33. ¹³C NMR spectrum of P4a5b.

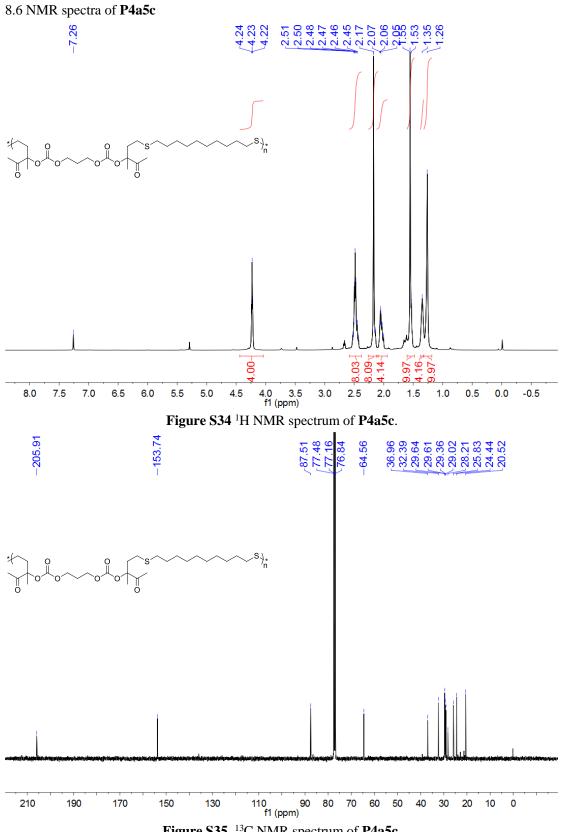


Figure S35. ¹³C NMR spectrum of P4a5c.

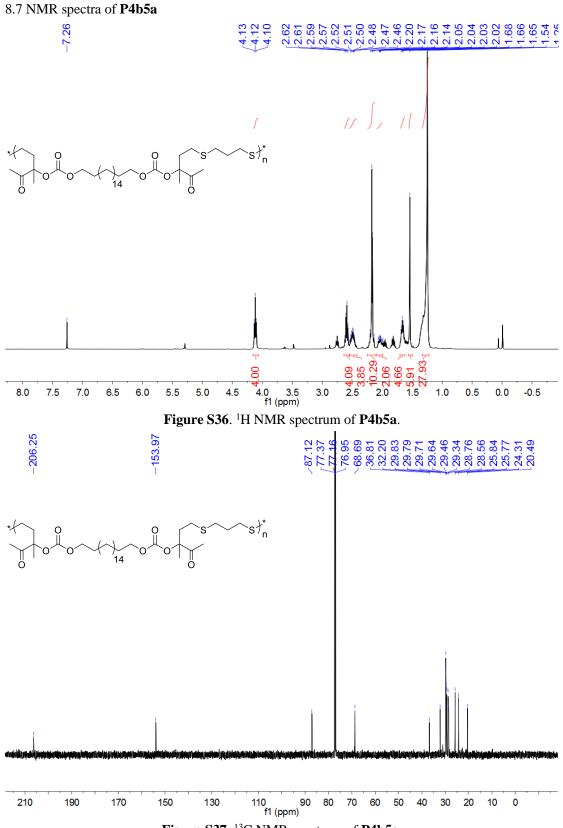


Figure S37. ¹³C NMR spectrum of P4b5a.

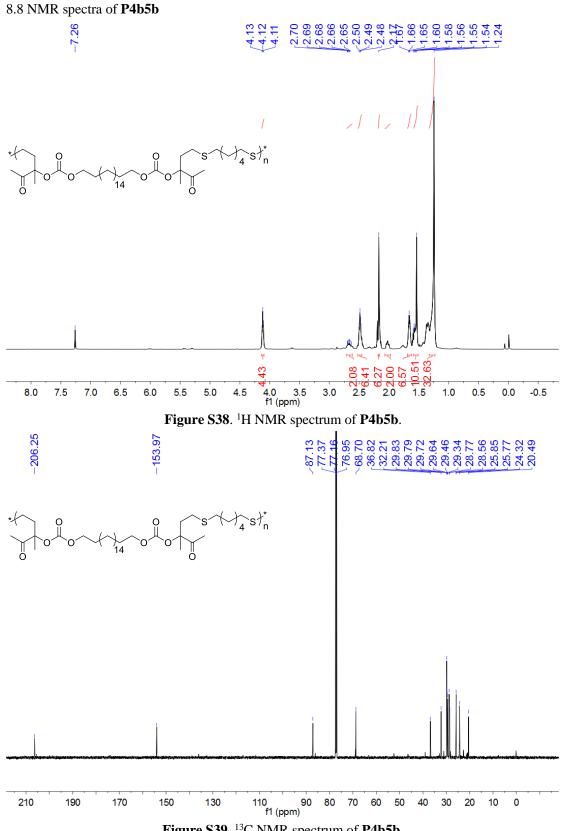


Figure S39. ¹³C NMR spectrum of P4b5b.

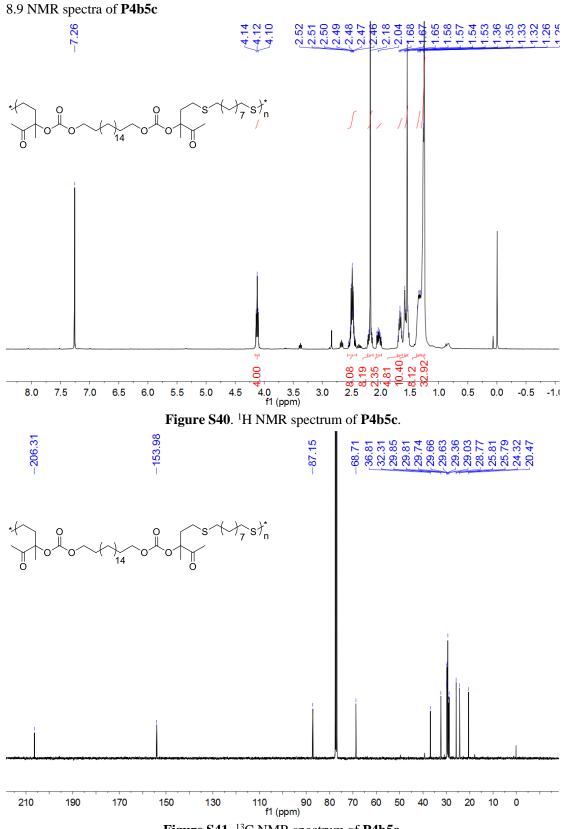


Figure S41. ¹³C NMR spectrum of P4b5c.

8.10 NMR spectra of P4c5a

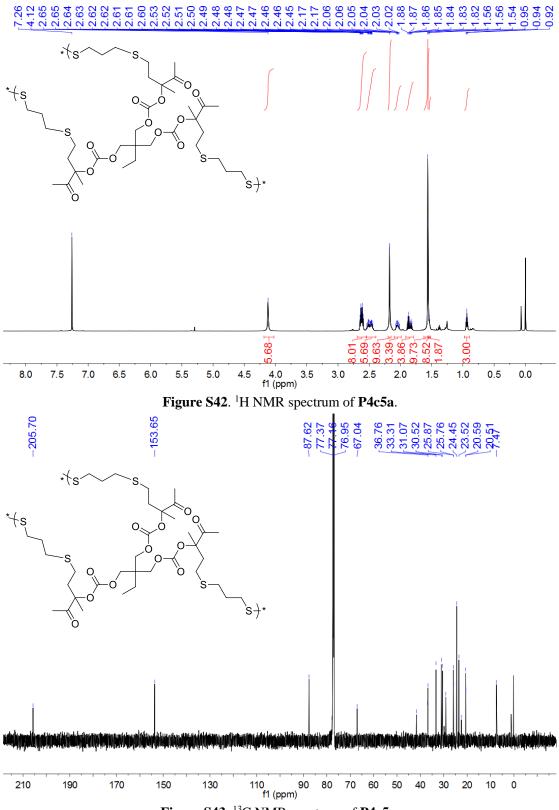


Figure S43. ¹³C NMR spectrum of P4c5a.

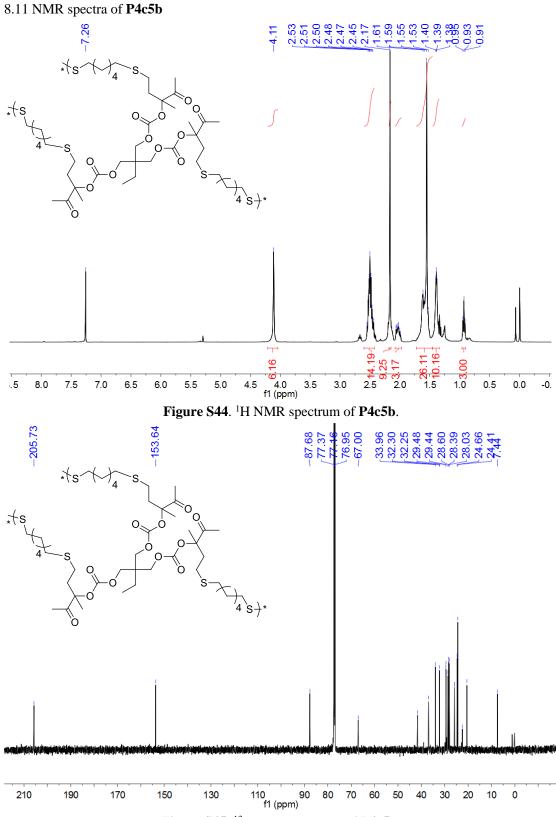


Figure S45. ¹³C NMR spectrum of P4c5b.

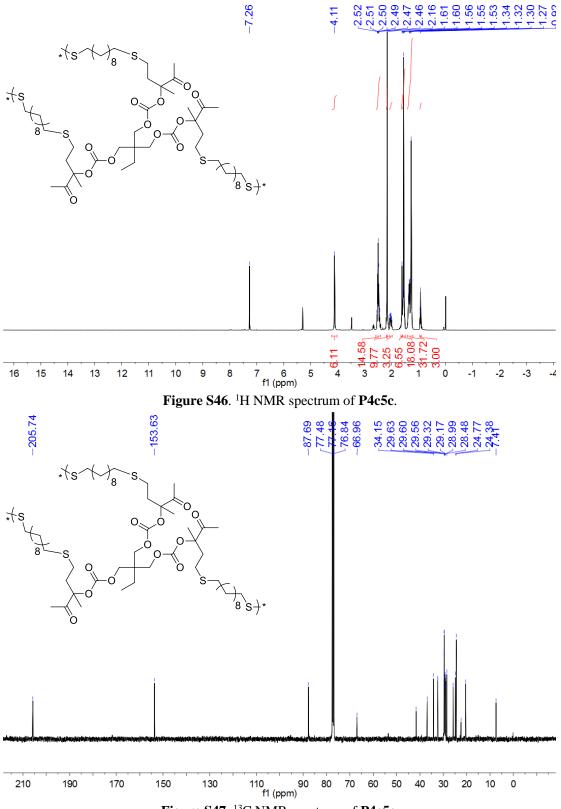
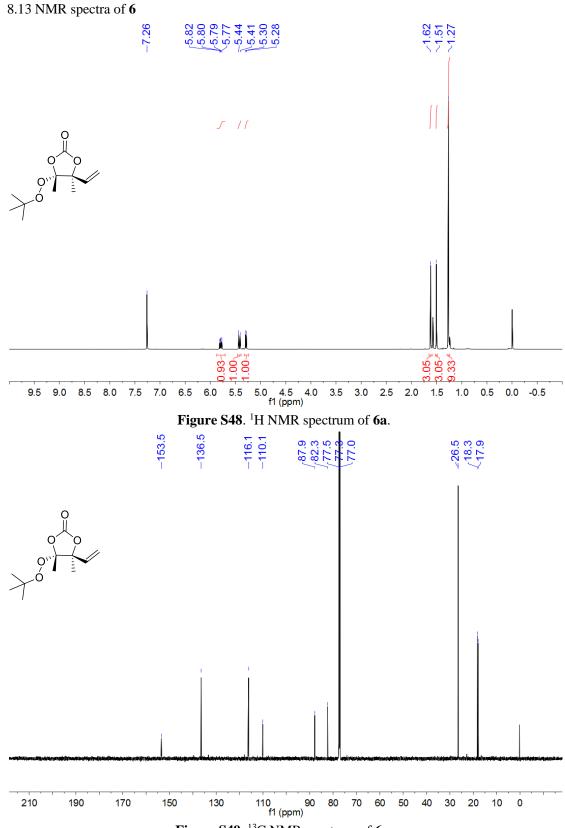
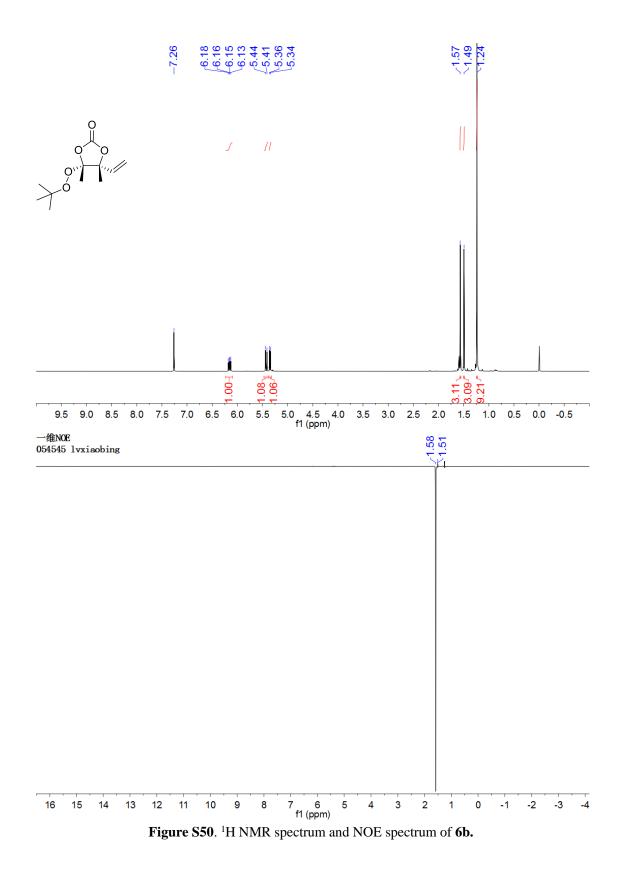
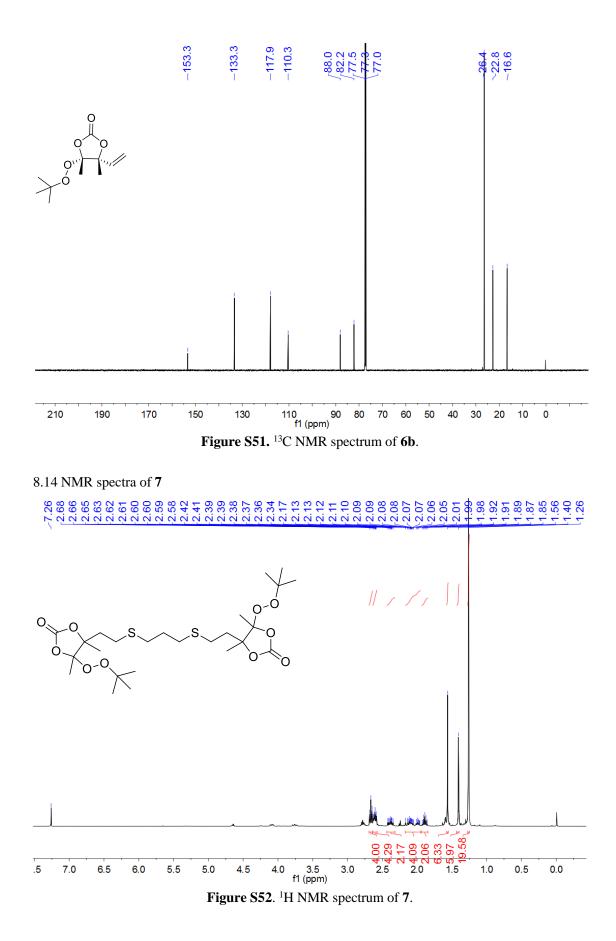
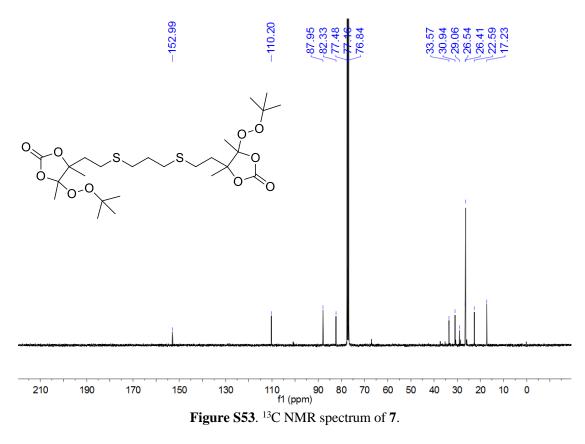





Figure S47. ¹³C NMR spectrum of P4c5c.



9. ESI MS Spectra

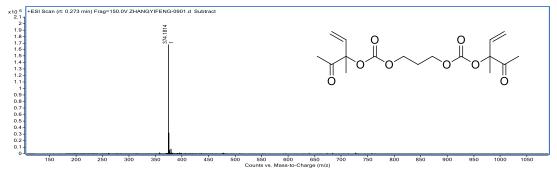


Figure S54. ESI MS spectrum of 4a.

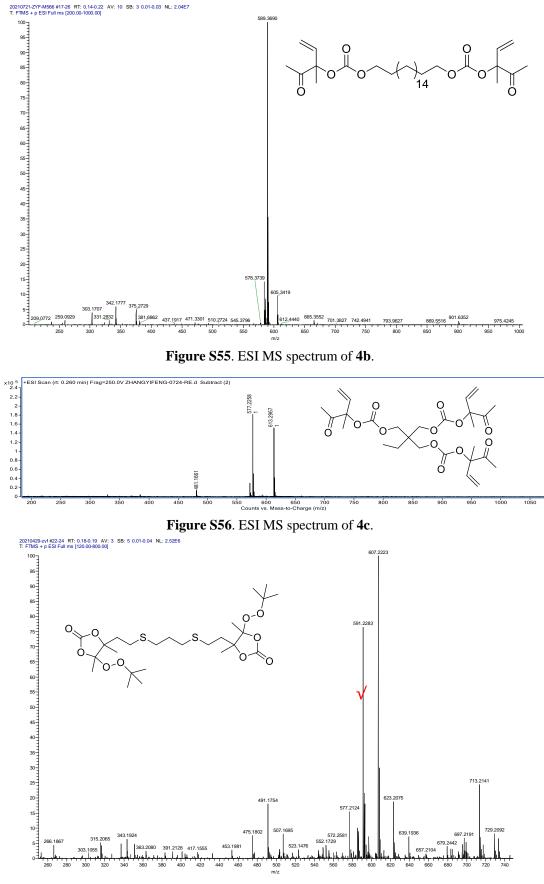


Figure S57. ESI MS spectrum of 7.

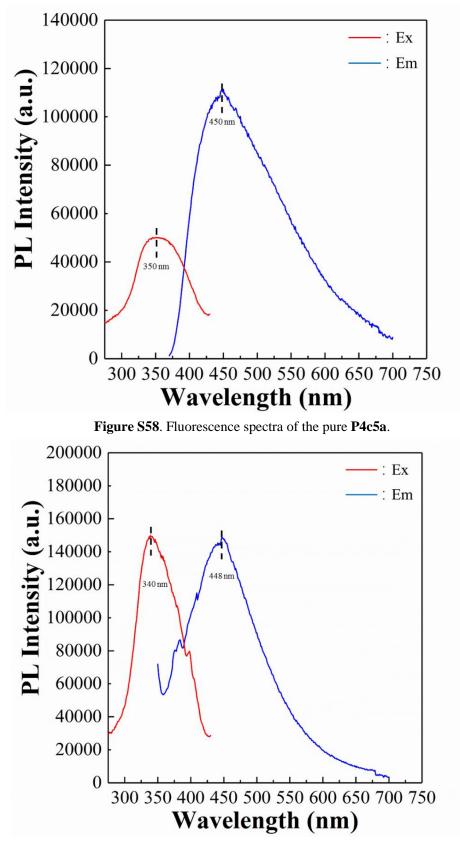


Figure S59. Fluorescence spectra of the pure P4c5b.

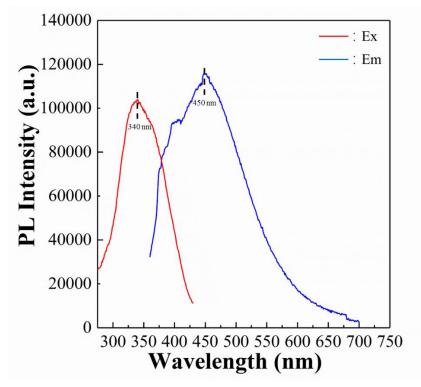


Figure S60. Fluorescence spectra of the pure P4c5c.

11. Transient photoluminescence decay curve of the pure P4c5

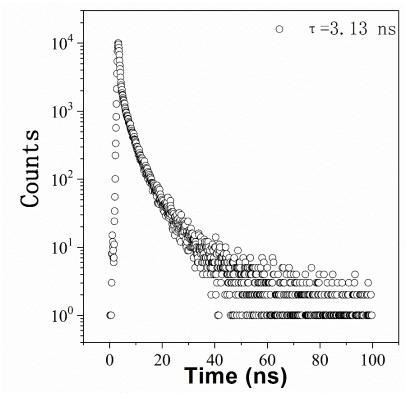


Figure S61. Transient photoluminescence decay curve of the pure P4c5a at 450 nm after excited at 350 nm

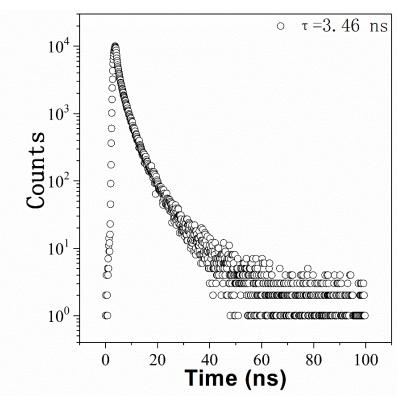


Figure S62. Transient photoluminescence decay curve of the pure P4c5b at 448 nm after excited at 340 nm

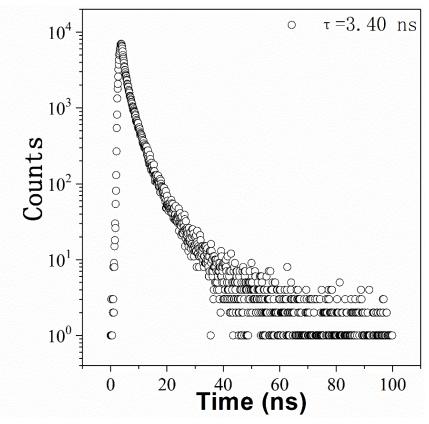


Figure S63. Transient photoluminescence decay curve of the pure P4c5c at 450 nm after excited at 340 nm

12. References

- H. Zhou, H. Zhang, S. Mu, W.-Z. Zhang, W.-M. Ren and X.-B. Lu, *Green Chem.*, 2019, 21, 6335–6341.
- H. Zhou, Y.-F. Zhang, W. Chen, W.-Z. Zhang and X.-B. Lu, Asian J. Org. Chem., 2021, DOI: 10.1002/ajoc.202100270.
- 3. M. Huler, M. Eck, D. Rothauer and S. Mecking, *Nature*, 2021, **590**, 423-427.