ELECTRONIC SUPPLEMENTARY INFORMATION

Facile Synthesis, Structure and Properties of CO_{2}-sourcedPoly(thioether-co-carbonate)s Containing Acetyl Pendantsvia Thio-Ene Click Polymerization
Yi-Feng Zhang, ${ }^{[a]}$ Wei-Ming Lai, ${ }^{[b]}$ Sheng Xie, ${ }^{[b]}$ Hui Zhou ${ }^{*[a]}$ and Xiao-Bing Lu ${ }^{[a]}$
[a] *State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
${ }^{[b]}$ State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
E-mail: zhouhui@dlut.edu.cn

1. Synthesis of polymeric monomers S2
2. Optimization of polymerization conditions S3
3. Synthesis of polymers via thiol-ene click reaction S4
4. Degradation reaction of monomer 4 via cascade reaction S8
5. Degradation reaction of polymers $\mathbf{P}-\mathbf{4 b 5 a}$ via cascade reaction S9
6. GPC curves of the polymers $\mathbf{P 4 5}$ and degradable polymer D-P45 S11
7. FT-IR spectra S16
8. NMR spectra. S19
9. ESI MS spectra S34
10. Fluorescence spectra. S36
11. Transient photoluminescence decay curve S37
12. References S39

1. Synthesis of polymeric monomers

4-Methyl-4-vinyl-5-methylene-1,3-dioxolan-2-one (2) was synthesized by the carboxylative cyclization of propargylic alcohol (1) with CO_{2} according to previous literatures. ${ }^{1}$

Figure S1. Synthesis of 4-methyl-4-vinyl-5-methylene-1,3-dioxolan-2-one (2) with diol 3.
4-Vinyl substituted α CC $2(10 \mathrm{mmol}), 1,18$-octadecanediol ($\mathbf{3 b}, 5 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(20.0 \mathrm{~mL})$ were added successively into a 100 mL flask equipped with a magnetic stirrer. Then 1,8 -diazabicyclo[5.4.0]undec-7-ene (DBU, $0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was introduced and the mixture was stirred for 12 h at room temperature. After the reaction was over, the solvent was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford monomer $\mathbf{4 b}$ (white solid, isolated yield: $\mathbf{7 5 \%}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.01(\mathrm{dd}$, $J=17.4,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=6.7,2.0 \mathrm{~Hz}$, 4H), $2.14(\mathrm{~s}, 6 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.21(\mathrm{~m}, 28 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 204.2,153.9,135.9,117.0,87.4,77.3,77.1,76.9,68.7,29.8,29.7,29.7,29.6,29.6,29.3$, 28.7, 25.7, 23.7, 21.3. $\mathbf{I R}(\mathbf{K B r}): v=3432,2924,2853,1745(\mathrm{C}=\mathrm{O}), 1728(\mathrm{C}=\mathrm{O}), 1677,1633,1462$, 1391, 1370, 1356, 1275, 1181, 1123, 1050, 993, 932, 790, $617 \mathrm{~cm}^{-1}$. HRMS: m / z calculated for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 589.3716$; found 589.3690.

4-Vinyl substituted $\alpha \mathrm{CC} 2(15 \mathrm{mmol})$, trimethylolpropane ($\mathbf{3 c}, 5 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(20.0 \mathrm{~mL})$ were added successively into a 100 mL flask equipped with a magnetic stirrer. Then 1,8 -diazabicyclo[5.4.0]undec-7-ene ($\mathrm{DBU}, 0.5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was introduced and the mixture was stirred for 12 h at room temperature. After the reaction was over, the solvent was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford monomer $\mathbf{4 c}$ (coreless oil, isolated yield: 71%). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 5.98$ (dd, $J=17.4,11.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.29(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.12(\mathrm{~s}, 7 \mathrm{H}), 2.10(\mathrm{~s}$, 9H), $\left.1.58(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 5 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 203.6,153.5,135.6,117.3,87.8,77.3,77.1,76.9,67.0,41.5,23.7,22.4,21.1,7.2 . \operatorname{IR}(\mathbf{K B r}):$
$v=3435,2973,2943,1747(\mathrm{C}=\mathrm{O}), 1726(\mathrm{C}=\mathrm{O}), 1639,1458,1393,1356,1267,1180,1102,1081$, 988, 937, 904, 791, $661 \mathrm{~cm}^{-1}$. HRMS: m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{12}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 577.2261$; found 577.2258.

2. Optimization of polymerization conditions

To a Schlenk tube, 1,3-dimercaptopropane (5a, 1.0 mmol$)$, $\mathbf{4 a}(1.0 \mathrm{mmol})$, $\left[\operatorname{Ir}\left(4,4^{\prime}{ }^{\mathrm{t}} \mathrm{Bu}_{2}{ }^{-}\right.\right.$ bpy)(bpy) $)_{2} \mathrm{PF}_{6}$ ([Ir], $0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), p-Toluidine ($0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) were added, following by the addition of 1-methyl-2-pyrrolidinone (NMP) (1.0 mL). The Schlenk tube was irradiated with a 450 nm LED for 24 h . After that, a small amount of the crude product was taken to determine monomer conversion by ${ }^{1} \mathrm{H}$ NMR spectrum. The remaining product was repeatedly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at $35^{\circ} \mathrm{C}$ for 24 h to afford polymer P4a5a (light yellow sticky liquid, 84% yield.).

Table S1. Optimization of reaction conditions for the synthesis of polymers.

			$\text { sH } \xrightarrow[\text { light, sol, r.t., } 12 \mathrm{~h}]{\text { lnitiar }}$			
Entry	Polymer	Solvent	$\begin{gathered} \text { Initiator } \\ (5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} M_{\mathrm{n}} \\ (\mathrm{~g} / \mathrm{mol})^{\mathrm{e}} \end{gathered}$	Conv. $(\%)^{\mathrm{f}}$	$\nabla^{\text {e }}$
$1^{\text {a }}$	P4a5a	THF	DMPA	5900	>99\%	2.12
$2^{\text {b }}$	P4a5a	THF	$[\mathrm{Ir}]+\mathrm{p}$-Toluidine	7800	90\%	1.46
3	P4a5a	DMF	[Ir] $]$ p-Toluidine	5100	>99\%	1.37
4	P4a5a	NMP	$[\mathrm{Ir}]+p$-Toluidine	7800	>99\%	1.37
$5^{\text {b }}$	P4a5a	NMP	$[\mathrm{Ir}]+\mathrm{p}$-Toluidine	10400	>99\%	1.43
$6^{\text {c }}$	P4a5a	NMP	$[\mathrm{Ir}]+p$-Toluidined	5300	>99\%	1.45
$7^{\text {d }}$	P4a5a	NMP	$[\mathrm{Ir}]+p$-Toluidinee	4800	89\%	1.32
8	P4a5a	NMP	[Ir]	4500	>99\%	1.48

[a]. $365 \mathrm{~nm} .[\mathrm{b}] .24 \mathrm{~h} .[\mathrm{c}]$. Initiator $=10 \mathrm{~mol} \%$. [d]. Initiator $=1 \mathrm{~mol} \%$. [e]. Molecular weights were measured by GPC.[f]. Conversions was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy on the crude samples. $[\mathbf{I r}]=\left[\operatorname{Ir}\left(4,4^{\prime}-{ }^{-} \mathrm{Bu}_{2}\right.\right.$-bpy $\left.)(\mathrm{bpy})_{2}\right] \mathrm{PF}_{6}$ (${ }^{\text {t }} \mathrm{Bu}$: tert-butyl). 2,2-Dimethoxy-2-phenyl acetophenone (DMPA).

3. Synthesis of polymers via thiol-ene click reaction

3.1 Synthesis of polymer P4a5

P4a5

Figure S2. Synthesis of P4a5 from 4a and dithiol 5.
To a Schlenk tube, dithiol $(\mathbf{5}, 1.0 \mathrm{mmol}), \mathbf{4 a}(1.0 \mathrm{mmol}),\left[\operatorname{Ir}\left(4,4^{\prime}-{ }^{-} \mathrm{Bu}_{2}-\mathrm{bpy}\right)(\mathrm{bpy})_{2}\right] \mathrm{PF}_{6}([\mathbf{I r}]$, $0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), p-toluidine ($0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) were added, following by the addition of 1.0 mL of 1-methyl-2-pyrrolidinone (NMP). The Schlenk tube was irradiated with a 450 nm LED for 24 h . After that, a small amount of the crude product was taken to determine monomer conversion by ${ }^{1} \mathrm{H}$ NMR spectrum. The remaining product was repeatedly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at $35{ }^{\circ} \mathrm{C}$ for 24 h to afford polymer P4a5.

P4a5b (light yellow sticky liquid. 82% yield.) $M_{\mathrm{n}}=9300 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.43 . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 4.23(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 8 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H})$, $1.63-1.49(\mathrm{~m}, 10 \mathrm{H}), 1.37(\mathrm{~s}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 205.9,153.7,87.4,77.3,77.1$, 76.9, 64.5, 36.9, 32.2, 29.4, 28.5, 28.2, 25.8, 24.4, 20.5. IR(KBr): v=2927, 2854, 1746(C=O), $1721(\mathrm{C}=\mathrm{O}), 1461,1379,1360,1331,1268,1165,1102,1072,1032,913,791 \mathrm{~cm}^{-1}$.

P4a5c (light yellow sticky liquid. 87% yield.) $M_{\mathrm{n}}=14700 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.37 .{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 4.23(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.58-2.38(\mathrm{~m}, 8 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H})$, $1.54(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 10 \mathrm{H}), 1.35(\mathrm{~s}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 10 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.9,153.7$, 87.5, 77.4, 77.1, 76.8, 64.5, 36.9, 32.3, 29.6, 29.6, 29.3, 29.0, 28.2, 25.8, 24.4, 20.5. IR(KBr):
$v=3433,2925,2853,1743(\mathrm{C}=\mathrm{O}), 1715(\mathrm{C}=\mathrm{O}), 1459,1399,1358,1332,1265,1165,1102$, $1071,914,871,792 \mathrm{~cm}^{-1}$.
3.2 Synthesis of polymer P4b5

Figure S3. Synthesis of P4b5 from4b and dithiol 5.
To a Schlenk tube, dithiol (5, 1.0 mmol$), \mathbf{4 b}(1.0 \mathrm{mmol}),\left[\operatorname{Ir}\left(4,4^{\prime}-{ }^{-} \mathrm{Bu}_{2}-\mathrm{bpy}\right)(\mathrm{bpy})_{2}\right] \mathrm{PF}_{6}$ ([Ir], $0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, p-toluidine ($0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) were added, following by the addition of 1.0 mL of 1-methyl-2-pyrrolidinone (NMP). The Schlenk tube was irradiated with a 450 nm LED for 24 h . After that, a small amount of the crude product was taken to determine monomer conversion by ${ }^{1} \mathrm{H}$ NMR spectrum. The remaining product was repeatedly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at $35^{\circ} \mathrm{C}$ for 24 h to afford polymer $\mathbf{P 4 b 5}$.

P4b5a (light yellow solid. 85% yield.) $M_{\mathrm{n}}=12500 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.14 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.12(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.60(\mathrm{dd}, \mathrm{J}=13.8,6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.11(\mathrm{~m}$, 10H), $\left.2.03(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 28 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 5 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 206.2,153.9,87.2,77.3,77.1,76.9,68.6,36.8,32.2,29.8,29.7,29.7,29.6,29.4,29.3,28.7628 .5$, 25.8, 25.7, 24.3, 20.4. IR(KBr): $v=3430,2927,2853,1746(\mathrm{C}=\mathrm{O}), 1720(\mathrm{C}=\mathrm{O}), 1463,1394,1356$, 1276, 1166, 1101, 1075, 915, $793 \mathrm{~cm}^{-1}$.

P4b5b (light yellow solid. 81% yield.) $M_{\mathrm{n}}=16700 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.35 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.12(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.08-$
$1.95(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 10 \mathrm{H}), 1.24(\mathrm{~s}, 32 \mathrm{H}) .{ }^{\mathbf{1}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 206.2,153.9,87.1,77.3,77.1,76.9,68.7,36.8,32.2,29.8,29.7,29.7,29.6,29.4,29.3$, 28.7, 28.5, 25.8, 25.7, 24.3, 20.4. $\mathbf{I R}(\mathbf{K B r}): ~ v=3425,2923,2853,1743(\mathrm{C}=\mathrm{O}), 1723(\mathrm{C}=\mathrm{O}), 1465$, $1398,1358,1277,1168,1130,1104,1077,1029,917,792 \mathrm{~cm}^{-1}$.

P4b5c (light yellow solid. 89% yield.) $M_{\mathrm{n}}=23900 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=2.15 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.12(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.59-2.39(\mathrm{~m}, 8 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 8 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}$, $4 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 10 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 8 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 32 \mathrm{H}), 1.24-1.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 206.3,153.9,87.1,68.7,36.8,32.3,29.8,29.8,29.7,29.6,29.6,29.3$, 29.0, 28.7, 25.8, 25.7, 24.3, 20.4. $\mathbf{I R}(\mathbf{K B r}): v=3428,2922,2853,1744(\mathrm{C}=\mathrm{O}), 1724(\mathrm{C}=\mathrm{O}), 1463$, $1393,1356,1276,1165,1073,916,793 \mathrm{~cm}^{-1}$.
3.3 Synthesis of polymer P4c5

Figure S4. Synthesis of P4c5 from $\mathbf{4 c}$ and dithiol 5 .
To a Schlenk tube, dithiol (5, 1.5 mmol$), \mathbf{4 c}(1.0 \mathrm{mmol})$ and benzoin dimethyl ether (DMPA $0.05 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ were added, following by the addition of THF (1.0 mL). The Schlenk tube was irradiated with a 365 nm LED for 24 h . After that, a small amount of the crude product was taken to determine monomer conversion by ${ }^{1} \mathrm{H}$ NMR spectrum. The remaining product was repeatedly dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitated with cold methanol, isolated by centrifuge, and dried under vacuum at $35^{\circ} \mathrm{C}$ for 24 h to afford polymer $\mathbf{P 4 c 5}$.

P4c5a (colorless sticky liquid. 86% yield.) $M_{\mathrm{n}}=6600 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.83 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{6 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.12(\mathrm{~s}, 6 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 8 \mathrm{H}), 2.56-2.41(\mathrm{~m}, 6 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 9 \mathrm{H}), 2.04(\mathrm{~m}$, $4 \mathrm{H}), 1.85(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.56(\mathrm{~s}, 8 \mathrm{H}), 1.54(\mathrm{~s}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 205.7,153.6,87.6,77.3,77.1,76.9,67.0,41.6,36.9,36.7,33.3,31.0,30.5,29.0$, 25.8, 25.7, 24.5, 23.5, 22.4, 20.5, 20.5, 7.4. IR(KBr): v=3453, 2972, 2936, 1746 (C=O), 1721 $(\mathrm{C}=0), 1461,1380,1358,1267,1165,1102,1074,963,918,788 \mathrm{~cm}^{-1}$.

P4c5b (colorless sticky liquid. 82% yield.) $M_{\mathrm{n}}=6300 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=2.27 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.11(\mathrm{~s}, 6 \mathrm{H}), 2.60-2.37(\mathrm{~m}, 14 \mathrm{H}), 2.17(\mathrm{~s}, 9 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.45(\mathrm{~m}$, $26 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 10 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.7,153.6$, $87.6,77.3,77.1,76.9,67.0,41.6,36.9,36.8,33.9,32.3,32.2,29.4,29.4,28.6,28.3,28.0,25.85$ 25.8, 24.6, 24.4, 22.4, 20.4, 20.4, 7.4. IR(KBr): $v=3474,2929,2855,1804,1746$ (C=O), 1721 $(\mathrm{C}=\mathrm{O}), 1461,1395,1357,1266,1164,1102,1074,962,917,789,734 \mathrm{~cm}^{-1}$.

P4c5c (colorless sticky liquid. 85% yield.) $M_{\mathrm{n}}=6800 \mathrm{~g} / \mathrm{mol} . \mathrm{PDI}=1.85 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 4.11(\mathrm{~s}, 6 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 14 \mathrm{H}), 2.16(\mathrm{~s}, 9 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}$, $6 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 18 \mathrm{H}), 1.43-1.20(\mathrm{~m}, 31 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 5 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 205.7,153.6,87.6,77.4,77.1,76.8,66.9,41.6,36.9,34.1,32.3,32.3,29.6,29.6,29.5$,

4. Degradation of monomers 4 via cascade reaction

Figure S5. Degradation reaction of monomers 4.
To a 2 mL high-pressure tube, monomer ($\mathbf{4}, 1.0 \mathrm{mmol}$), tert-butyl hydroperoxide (5.5 $\mathrm{mmol} / \mathrm{mL}$ in decane) (TBHP, $2.0 \mathrm{mmol}, 2.0$ equiv.), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, 20 $\mathrm{mol} \%)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added. Then the mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$. The reaction solution was cooled to room temperature, and the solvent was removed by rotary evaporation. Two isomers (E and Z) could be purified and isolated by flash column chromatograph as a colorless oil.

(E)-Isomer 6a (colorless oil, 48% yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 5.79$ (dd, $J=17.1$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.27$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.4,136.4,116.1,110.0,87.8,82.3,26.4,18.3,17.9$. $\mathbf{I R}(\mathbf{K B r}): v=2987,1813(\mathrm{C}=\mathrm{O}), 1366,1265,1195,1179,1158,1141,1115,1067,1025,1009,932$, 891, 863, $767 \mathrm{~cm}^{-1}$. HRMS: m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$: 248.1498; found 248.1492.

(Z)-Isomer 6b (colorless oil, 48% yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.15$ (dd, $J=17.5$, $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.24$ (s, 9H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.3,133.3,117.9,110.3,88.0,82.1,26.4,22.7,16.6$. $\mathbf{I R}(\mathbf{K B r}): v=2984,1812(\mathrm{C}=\mathrm{O}), 1386,1366,1263,1219,1193,1108,1058,1024,935 \mathrm{~cm}^{-1} . \mathbf{H R M S}:$ m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$: 248.1498; found 248.1493. All the resonances in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in good agreement with literature values. ${ }^{2}$

Figure S6. Stacked ${ }^{1} \mathrm{H}$ NMR spectra of the selective depolymerisation of $\mathbf{4 b}$.

5. Degradation of polymer P-4b5a via cascade reaction

Figure S7. Degradation of polymer P-4b5a.
5.1 Degradation of $\mathbf{P 4 b 5 a}$ via cascade reaction

To a 2 mL high-pressure tube, P4b5a ($175 \mathrm{mg}, 0.254 \mathrm{mmol}$,), tert-butyl hydroperoxide (5.5 $\mathrm{mmol} / \mathrm{mL}$ in decane, $0.508 \mathrm{mmol}, 45 \mathrm{mg}, 0.1 \mathrm{~mL}$), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, 0.05 mmol, $20 \mathrm{~mol} \%, 6,96 \mathrm{mg})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ were added. Then the mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$. The reaction solution was cooled to room temperature. The solution was then evaporated to a minimum amount by evaporation, dissolved with a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ precipitated in hexane, and the product was isolated by centrifuge. Repeated the above steps twice, and vacuumdried to obtain 3b (white solid, 65% yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 3.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H})$, $1.60-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 28 \mathrm{H}), 1.21(\mathrm{~s}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 62.8,32.8$,
29.4, 25.6. All the resonances in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were in good agreement with literature values. ${ }^{3}$ Then the filtrate was removed by rotary evaporation. The resulting crude mixture was purified by flash column chromatograph on silica gel to afford 7 (colorless oil, 13% yield). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.64-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.94(\mathrm{~m}$, 4H), $1.94-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 19 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $152.9,110.2,87.9,82.3,77.4,77.1,76.8,33.5,30.9,29.0,26.5,26.4,22.5,17.2 . \mathbf{I R}(\mathbf{K B r}): v=2924$, $1809(\mathrm{C}=\mathrm{O}), 1630,1401,1366,1248,1189,1146,1045,1006,963,927,892,771.05,729,519 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS: m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{10} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 591.2274$; found 591.2283.
5.2 The depolymerization reaction of $\mathbf{P 4 b 5 a}$ were detected by means of In-situ FT-IR

To a 10 mL flask, equipped with a magnetic stir bar, was charged with $\mathbf{P 4 b 5 a}(175 \mathrm{mg}, 0.254$ mmol), tert-butyl hydroperoxide ($5.5 \mathrm{mmol} / \mathrm{mL}$ in decane, $0.1 \mathrm{~mL}, 2.0$ equiv.), 1,5,7-triazabicylo[4.4.0]dec-5-ene (TBD, $0.05 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, then in-situ FT-IR probe was equipped to check the IR signals. Then the mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$.

Figure S8. Stacked ${ }^{1} \mathrm{H}$ NMR spectra of the selective depolymerization of $\mathbf{P 4 b 5 a}$.

6. GPC curves of the polymers P45 and degradable polymer D-P45

Table S2. GPC comparison of polymers P45 and degradable polymers D-P45.

Entry	Polymer	$M_{\mathrm{n}}(\mathrm{g} / \mathrm{mol})^{\mathrm{a}}$	D-Polymer	$M_{\mathrm{n}}{ }^{\prime}(\mathrm{g} / \mathrm{mol})^{\mathrm{a}}$
1	P4a5a	10400	D-P4a5a	298
2	P4a5b	9300	D-P4a5b	311
3	P4a5c	14700	D-P4a5c	626
4	P4b5a	12500	D-P4b5a	1100
5	P4b5b	16700	D-P4b5b	1300
6	P4b5c	23900	D-P4b5c	979
7	P4c5a	6600	D-P4c5a	417
8	P4c5b	6300	D-P4c5b	339
9	P4c5c	6800	D-P4c5c	373

[a]. Number average molecular weights (M_{n}) were determined by gel permeation chromatography in THF, calibrated with polystyrene.

Figure S9. GPC curves of polymer P-4a5a and degraded polymer D-P4a5a.

Figure S10. GPC curves of polymer $\mathbf{P}-\mathbf{4 a 5 b}$ and degraded polymer $\mathbf{D}-\mathbf{P 4} \mathbf{a 5 b}$.

Figure S11. GPC curves of polymer P-4a5c and degraded polymer D-P4a5c.

Figure S12. GPC curves of polymer P-4b5a and degraded polymer D-P4b5a.

Figure S13. GPC curves of polymer $\mathbf{P}-\mathbf{4 b 5 b}$ and degraded polymer $\mathbf{D}-\mathbf{P} 4 b \mathbf{5 b}$.

Figure S14. GPC curves of polymer P-4b5c and degraded polymer D-P4b5c.

Figure S15. GPC curves of polymer P-4c5a and degraded polymer D-P4c5a.

Figure S16. GPC curves of polymer P-4c5b and degraded polymer D-P4c5b.

Figure S17. GPC curves of polymer P-4c5c and degraded polymer D-P4c5c.

8. FT-IR spectra

Figure S18. FT-IR spectra of polymers P4a5.

Figure S19. FT-IR spectra of polymers P4b5.

Figure S20. FT-IR spectra of polymers P4c5.

Figure S21. FT-IR spectra of $\mathbf{P 4 b 5 a}, \mathbf{4 b}$ and 7.

Figure S22. FT-IR spectra of 4a, $\mathbf{6 a}$ and $\mathbf{6 b}$.

Figure S23. FT-IR spectra of $\mathbf{4 b}, \mathbf{6 a}$ and $\mathbf{6 b}$.

8. NMR Spectra

8.1 NMR spectra of $\mathbf{4 a}$

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$.
へ্ণ
$\stackrel{N}{\infty}$
$\stackrel{N}{\stackrel{N}{\sim}}$
$\stackrel{\stackrel{N}{N}}{\stackrel{\sim}{+}}$

$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N}$

Figure $\mathbf{S 2 5} .{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$.
8.2 NMR spectra of $\mathbf{4 b}$

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$.
8.3 NMR spectra of $\mathbf{4 c}$

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}$.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 c}$.
8.4 NMR spectra of P4a5a

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 a 5 a}$.

$\underset{\substack{i}}{\substack{i}}$

Figure S31. ${ }^{13} \mathrm{C}$ NMR spectrum of P4a5a.
8.5 NMR spectra of $\mathbf{P 4 a 5 b}$
$\stackrel{\stackrel{\circ}{+}}{\stackrel{1}{+}}$

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{4 a 5 b}$.

Figure S33. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 a 5 b}$.
8.6 NMR spectra of P4a5c

Figure $\mathbf{S 3 4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 a 5 c}$.

$\begin{aligned} & \bar{\sigma} \\ & \stackrel{\sim}{i} \end{aligned}$	

-		${ }^{\circ} \mathrm{m}$
-		

Figure S35. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 a 5 c}$.
8.7 NMR spectra of $\mathbf{P 4 b 5 a}$

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} 4 \mathrm{~b} 5 \mathrm{a}$.

Figure S37. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 b 5 a}$.
8.8 NMR spectra of $\mathbf{P 4 b 5 b}$

Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P} \mathbf{4 b 5 b}$.

Figure S39. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P} 4 \mathrm{~b} 5 \mathrm{~b}$.

Figure $\mathbf{S 4 0}$. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 b 5 c}$.

Figure S41. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 b 5 c}$.
8.10 NMR spectra of $\mathbf{P 4 c 5 a}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 c 5 a}$.

Figure S43. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 c 5 a}$.
8.11 NMR spectra of $\mathbf{P 4 c 5 b}$

Figure $\mathbf{S 4 4}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 c 5 b}$.

Figure S45. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 c 5 b}$.
8.12 NMR spectra of $\mathbf{P 4 c 5 c}$

Figure S46. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P 4 c 5 c}$.

Figure $\mathbf{S 4 7}$. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{P 4 c 5 c}$.

Figure S48. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$.

Figure S49. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 a}$.

Figure S50. ${ }^{1} \mathrm{H}$ NMR spectrum and NOE spectrum of $\mathbf{6 b}$.

Figure S51. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b}$.
8.14 NMR spectra of 7

Figure S52. ${ }^{1} \mathrm{H}$ NMR spectrum of 7.

Figure S53. ${ }^{13} \mathrm{C}$ NMR spectrum of 7 .

9. ESI MS Spectra

Figure S54. ESI MS spectrum of 4a.

Figure S55. ESI MS spectrum of 4b.

Figure S56. ESI MS spectrum of $\mathbf{4 c}$.

Figure S57. ESI MS spectrum of 7.
10. Fluorescence spectra of the pure P4c5

Figure S58. Fluorescence spectra of the pure P4c5a.

Figure S59. Fluorescence spectra of the pure $\mathbf{P 4 c 5 b}$.

Figure S60. Fluorescence spectra of the pure $\mathbf{P 4 c 5 c}$.
11. Transient photoluminescence decay curve of the pure P4c5

Figure S61. Transient photoluminescence decay curve of the pure P4c5a at 450 nm after excited at 350 nm

Figure S62. Transient photoluminescence decay curve of the pure $\mathbf{P 4 c 5 b}$ at 448 nm after excited

Figure S63. Transient photoluminescence decay curve of the pure $\mathbf{P 4 c 5 c}$ at 450 nm after excited at 340 nm

12. References

1. H. Zhou, H. Zhang, S. Mu, W.-Z. Zhang, W.-M. Ren and X.-B. Lu, Green Chem., 2019, 21, 6335-6341.
2. H. Zhou, Y.-F. Zhang, W. Chen, W.-Z. Zhang and X.-B. Lu, Asian J. Org. Chem., 2021, DOI: 10.1002/ajoc. 202100270.
3. M. Huler, M. Eck, D. Rothauer and S. Mecking, Nature, 2021, 590, 423-427.
