Supporting Information

α-Amylase lighted aggregation-induced emission luminogens based self-healing hydrogels

Lili Cai^a, Xueru Xiong^{b,c}, Mingyu Qiao^a, Jianwei Guo^{a,*}, Huatang Zhang^{a,*}, Jiawei

Lin^{b,c}, Sa Liu^{b,c}, Yong-Guang Jia^{b,c}*

^aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^bSchool of Materials Science and Engineering, South China University of Technology,

Guangzhou, 510641, China

^cNational Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China

Figure S1. Fluorescence intensity changes ($\lambda_{ex} = 320 \text{ nm}$) of various PLGA-TPE concentrations from 0.02 to 0.09 mmol/L in water at room temperature.

Figure S2. Fluorescence emission ($\lambda_{ex} = 320$ nm) of PLGA-TPE in the presence of different molar ratios of Ac- γ -CD to TPE units ([TPE] = 0.09 mmol/L) at room temperature for 24 h.

Figure S3. Fluorescence spectra of DN hydrogel with different incubate time in the presence of 0.5 U/mL (A), 1 U/mL (B) α -amylase buffer (0.1 mM MES buffer, pH 6.0).

Figure S4. Fluorescence emission ($\lambda_{ex} = 320$ nm) of DN hydrogel in the presence of different swelling time in water.