Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Towards modulating colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups

Ming Hui Chua ^a, Sheng Heng Gerald Toh ^a, Pin Jin Ong ^a, Zhuang Mao Png ^a, Qiang Zhu ^{a, *}, Shanxin Xiong ^c, Jianwei Xu ^{*, a, b}

^a Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634.

^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

^c College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China Correspondence: jw-xu@imre.a-star.edu.sg (J. Xu); zhuq@imre.a-star.edu.sg (Q. Zhu)

Content:

1. Optical and electrochemical properties of isoindigo polymers	Page 2
2. Surface morphology of spin-coated polymer thin films	Page 3
3. Spectroelectrochemistry of polymers under the application of negative voltages	Page 4
4. Electrochromic switching studies (Response Time and Switching Stability)	Page 5
5. Summary of EC switching properties of reported isoindigo polymers	Page 8
6. Appendix (FTIR, GPC and NMR spectra)	Page 13

1. Optical and electrochemical properties of isoindigo polymers

Figure S1. Normalized absorption spectra of the six synthesized isoindigo polymers in solution (a) and thin film (b).

Figure S2. Cyclic voltammograms of the six synthesized isoindigo polymers.

tuble by reported option and electronicinear properties of structurary analogous/similar isolitargo polymers												
Analogous/	λ_{abs} Solution	$\lambda_{abs}{}^{ThinFilm}$	λ_{onset}	E_g^{opt}	E _{HOMO}	Elumo	$E_g^{\ elec}$	Rof				
Similar Polymer	(nm)	(nm)	(nm)	(eV)	(eV)	(eV)	(eV)	KU				
n(IID T)	647	604	775	1.6	-5.8	-3.95	1.86	1				
p(11D-1)	644, 691	645, 697	785	1.58	-5.8	-3.81	1.99	2				
p(IID-2T)	647, 706	637, 701	780	1.59	-5.65	-3.78	1.87	2				
p(IID-3T)	628	628, 682	785	1.58	-5.48	-3.70	1.78	2				
p(IID-TT)	666, 723	656, 720	800	1.55	-5.70	-3.73	1.97	2				
p(IID-EDOT)	-	675, 735	802	1.55	-5.34	-3.94	1.40	3				

Table S1. Reported optical and electrochemical properties of structurally analogous/similar isoindigo polymers

1.26

1.33

-4.8

_

-3.48

984

932

424, 736

785

_

799

p(IID-2EDOT)

4

5

_

1.45

2. Surface morphology of spin-coated polymer thin films

Figure S3. SEM images of the surfaces of the six polymer thin films under 1 µm magnification.

Figure S4. SEM images of the surfaces of the six polymer thin films under 100 nm magnification.

3. Spectroelectrochemistry of polymers under the application of negative voltages

Figure S5. Spectroelectrochemistry of isoindigo polymers (a) p(IID-T), (b) p(IID-2T), (c) p(IID-3T), (d) p(IID-TT), (e) p(IID-EDOT) and (f) p(IID-2EDOT), undergo electrochemical reductive doping.

4. Electrochromic switching studies

Figure S6. EC switching response time measurements of the six polymers.

Figure S7. Square-wave potential step absorptiometry of polymer p(IID-T) (showing different sets of 25 cycles) undergoing EC switching at (a) 690 nm and (b) 975 nm at +/- 2.0 V, 30s/10s oxidation/reduction cycling intervals.

Figure S8. Square-wave potential step absorptiometry of polymer p(IID-2T) (showing different sets of 25 cycles) undergoing EC switching at (a) 690 nm and (b) 900 nm at +/- 2.0 V, 30s/10s oxidation/reduction cycling intervals.

Figure S9. Square-wave potential step absorptiometry of polymer p(IID-3T) (showing different sets of 25 cycles) undergoing EC switching at (a) 625 nm and (b) 850 nm at +/- 1.9 V, 30s/10s oxidation/reduction cycling intervals.

Figure S10. Square-wave potential step absorptiometry of polymer **p(IID-TT)** (showing different sets of 25 cycles) undergoing EC switching at (a) 710 nm and (b) 920 nm at +/- 1.9 V, 30s/10s oxidation/reduction cycling intervals.

Figure S11. Square-wave potential step absorptiometry of polymer **p(IID-EDOT)** (showing different sets of 25 cycles) undergoing EC switching at (a) 675 nm and (b) 950 nm at +/- 1.8 V, 30s/10s oxidation/reduction cycling

Figure S12. Square-wave potential step absorptiometry of polymer **p(IID-2EDOT)** (showing different sets of 25 cycles) undergoing EC switching at (a) 740 nm and (b) 1040 nm at +/- 1.6 V, 30s/10s oxidation/reduction cycling intervals.

S/ No.	Chemical Structure	Neutral Colour	Oxidised Colour	λ _{abs} _{neutral} (nm)	λ_{abs} ox (nm)	$\lambda_{Switching}$ (nm)	Δ%T (%)	$\tau_{B}\left(s\right)$	$\tau_{C}(s)$	CE (cm ² C ⁻¹)	Cyclin g Interva ls	Cycling Stabilit y	Re f
1	$C_{8}H_{17}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $x = 0.5$	Cyan	Transmissive Grey	663	915, 1350	460 660 1600	8.7 11.4 27.4	2.85 2.92 -	- - 0.45	53.15 38.14 162.49	+/- 1.5V 1 - 10 s	~ 40 Cycles	6
2	$C_{8}H_{17}$ $C_{10}H_{21}$ K $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $x = 0.25$	Black	Transmissive Light Grey	646	903, 1396	520 660 1600	21.0 28.0 34.1	1.90 1.02 -	- 0.38	155.97 145.61 181.73	+/- 1.5V 1 - 10 s	~ 40 Cycles	6
3	$C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $x = 0.2$	Black	Transmissive Light Grey	482	931, 1330	510 850 1330	20.6 17.8 31.3	0.72 0.88 -	- - 0.77	167.61 50.38 96.88	+/- 1.5V 1 - 10 s	~ 40 Cycles	6
4	$R = C_6 H_{13}$	Green L* = 72.84 a* = 7.74 b* = 0.03	Wathet Blue L* = 73.81 a* = 3.30, b* = 5.71	424 714	330 to 1600	424 714 1000 1500 1600	35 27 81 78 86	0.98 1.07 0.78 0.75 0.83	0.68 0.66 1.34 1.34 1.39	 64 305 292 105 192 	0.9 V 1 – 10s	~ 60 Cycles	4

 Table S2. EC switching properties of reported isoindigo polymers

5	$R = C_{12}H_{25}$	Light green L* = 156.41, a* = 6.39 b* = 4.03	Blue $L^* = 150.35,$ $a^* = 10.20,$ $b^* = 5.22$	427 733	330 to 1600	427 733 1050 1500 1600	50 29 83 91 81	0.77 0.74 0.82 0.91 0.78	0.63 0.51 1.23 1.44 1.36	268 318 362 144 122	1.2 V 1 – 10s	~ 60 Cycles	4
6	$C_{2H_{5}}$	Colourless	Green then blue	460	928	460	34.8	3.5	2.8	93	0 – 1.4 V; 5 s	~50 cycles	7
7	$\begin{array}{c} & & C_2H_5 & O \\ & & C_4H_9 & V \\ & & C_4H_9 & V \\ & & C_4H_9 & C_4H_9 \\ & & C_2H_5 & C_2H_5 \end{array}$	Colourless	Green then dark blue	496	1237	496	47.6	3.4	2.6	195	0 – 1.4 V; 5 s	~50 cycles	7
8	$\begin{array}{ } \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Colourless	Green then blue	453	981	453	42.2	3.1	3.9	182	0 – 1.4 V; 5 s	~50 cycles	7

9	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Colourless	Pale brown then blue	480	1271	480	43.1	2.8	3.7	131	0 – 1.4 V; 5 s	~50 cycles	7
10	$\begin{array}{c} & C_{8}H_{17} & C_{8}H_{17} \\ & C_{10}H_{21} \\ & C_{8}H_{17} & O \\ & C_{8}H_{17} & O \\ & M = 3; n = 1 \\ & C_{10}H_{21} \\ & C_{8}H_{17} \end{array}$	Cyan $L^* = 71.60,$ $a^* = -6.79,$ $b^* = 0.24$	Grey $L^* = 72.08,$ $a^* = -0.45,$ $b^* = -0.72$	355 674	1500	670, 1500	12 33	2.89 2.36	0.39 2.23	52.94 92.92	0 – 1.35 V; 4s	~ 40 cycles	8
11	$\begin{array}{c} C_{8}H_{17} & C_{8}H_{17} \\ + C_{10}H_{21} \\ - C_{8}H_{17} & - C_{10}H_{17} \\ - C_{8}H_{17} & - C_{10}H_{17} \\ - C_{8}H_{17} & - C_{10}H_{17} \\ - C_{10}H_{17} \\ - C_{10}H_{17} & - C_{10}H_{17} \\ - C_{10$	Cyan $L^* = 63.25,$ $a^* = 8.60,$ $b^* = -1.67$	Grey L* = 65.15, a* = 0.45, b* = 2.15	353 672	1550	675 1600	18 58	2.04 1.5	0.33 1.35	171.52 153.08	0 – 1.35 V; 4s	~ 40 cycles	8
12	$\begin{array}{c} C_{8}H_{17} \\ \hline C_{10}H_{21} \\ \hline C_{10}H_{21} \\ \hline C_{10}H_{21} \\ \hline C_{8}H_{17} \\ x = 1, y = 1 \end{array} \begin{array}{c} S_{x+y} \\ C_{2}H_{5} \\ C_{4}H_{9} \\ \hline C_{4}H_{9} \\ \hline C_{4}H_{9} \\ \hline C_{4}H_{9} \end{array}$	Greenish brown	Livid blue	657	1580	700 1520	23.8 72.7	1.85	- 0.78	210 467	1.3 V 1 – 10s	~ 200 Cycles	9

13	$\begin{array}{c} C_{8}H_{17} \\ C_{10}H_{21} \\ C_{10}H_{21} \\ C_{10}H_{21} \\ C_{8}H_{17} \\ C_{8}H_{17} \\ C_{2}H_{5} \\ C_{1}H_{9} \\ C_{4}H_{9} \\ C_$	Antique violet	Greyish blue	554	1600	550 1510	41.1 56.9	0.67	- 0.94	254 300	1.3 V 1 – 10s	~ 200 Cycles	9
14	$\begin{array}{c} C_{8}H_{17} \\ C_{10}H_{21} \\ C_{10}H_{21} \\ C_{10}H_{21} \\ C_{8}H_{17} \\ C_{8}H_{17} \\ x = 1, y = 4 \end{array}$	Dark red	Transparent blue	547	1580	545 1550	38.2 80.8	1.26	- 0.36	268 389	1.1 V 1 – 10s	~ 200 Cycles	9

References

- 1. R. Stalder, J. Mei and J. R. Reynolds, *Macromolecules*, 2010, **43**, 8348-8352.
- 2. T. Lei, Y. Cao, X. Zhou, Y. Peng, J. Bian and J. Pei, *Chemistry of Materials*, 2012, 24, 1762-1770.
- 3. F. Grenier, B. R. Aïch, Y.-Y. Lai, M. Guérette, A. B. Holmes, Y. Tao, W. W. H. Wong and M. Leclerc, *Chemistry of Materials*, 2015, **27**, 2137-2143.
- 4. H. Gu, S. Ming, K. Lin, S. Chen, X. Liu, B. Lu and J. Xu, *Electrochimica Acta*, 2018, **260**, 772-782.
- 5. Y. Wang, E. Zeglio, H. Liao, J. Xu, F. Liu, Z. Li, I. P. Maria, D. Mawad, A. Herland, I. McCulloch and W. Yue, *Chemistry of Materials*, 2019, **31**, 9797-9806.
- 6. H. Xie, M. Wang, L. Kong, Y. Zhang, X. Ju and J. Zhao, *RSC Advances*, 2017, **7**, 11840-11851.
- 7. Q. Lu, X. Zhang, W. Cai, Y. Wang, C. Yang, Y. Chen, W. Zhang, Z. Zhang, H. Niu and W. Wang, Solar Energy Materials and Solar Cells, 2019, **200**, 109979.
- 8. Y. Zhang, S. Chen, Y. Zhang, H. Du and J. Zhao, *Polymers*, 2019, **11**, 1626.
- 9. X. Cheng, Y. Ma, X. Ju, W. Zhao, J. Zhao, Q. Li, Z. Sang, H. Du and Y. Zhang, *Synthetic Metals*, 2020, **270**, 116589.

APPENDIX

Molecular Weig	ght Averages						
Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	55362	34652	58090	89614	122378	84876	1.676

Molecular Weight Averages

Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	66811	18835	74570	164097	246688	151779	3.959

Molecular Weight Averages											
Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD				
Peak 1	15983	5356	20739	69776	137148	60555	3.872				

._____

Molecular Weig	ght Averages						
Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	241965	74865	225342	422193	577679	397513	3.01

Molecular Weig	ght Averages						
Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	25652	8510	31235	63526	95566	58946	3.67

Molecular Weight Averages

Peak	Mp (g/mol)	Mn (g/mol)	Mw (g/mol)	Mz (g/mol)	Mz+1 (g/mol)	Mv (g/mol)	PD
Peak 1	13421	11088	21703	37087	55440	34644	1.957

