Electronic Supplementary Information

For

Microphase-separated, magnetic macroporous polymers with

amphiphilic swelling from emulsion templating

Tao Zhang,^{*a,b} Hui Cao,^a Haoguan Gui,^c Zhiguang Xu^d and Yan Zhao^{*a}

^a College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

^b China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China

^c Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China

^d China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China

Corresponding authors:

<u>zhang.tao@suda.edu.cn</u> (T. Zhang) <u>yanzhao@suda.edu.cn</u> (Y. Zhao)

1. Chemical structure

The ¹H NMR spectrum of the T1107-TA (Fig. S1) has an integral ratio of I_a (the hydrogen of the acrylate) to I_i (the methyl of PPO) at 2:63.35. The theoretical $I_a:I_i$ from the complete reaction between acryloyl chloride and the T1107 hydroxyl end groups is 2:60, and thus the ¹H NMR results show that around 94 % of the hydroxyl end groups on the T1107 were endcapped with reactive acrylate groups.

Fig. S2. (a) TGA curves of Fe_3O_4 and Fe_3O_4 -A (the insert showing the morphology of Fe_3O_4 -A from SEM); (b) Diameter distribution of Fe_3O_4 -A from SEM micrograph.

From TGA curves in Fig. S2a, the mass loss of Fe_3O_4 -A was around 7.0% after heating to 600 °C, much higher than that of the pristine Fe_3O_4 at 3.5%. The significant increase (around 3.5%) in the mass loss can be ascribed to the loss of (3acryloyloxy)propyltrimethoxysilane.

Fig. S3. Optical micrographs of (a) as-prepared HIPE (mPT-2) and (b) the HIPE after storage for a week.

	01	TIDD	•
- Coblo	N	LIDE	r001000
I ADIC	D .		ICCIDES
	~ - •		1001000

	Control 1	Control 2	
External, aqueous phase, wt. %			
T1107	1.00	1.00	
Fe ₃ O ₄ -A	4.00	0.00	
Acrylamide	2.00	2.00	
H ₂ O	13.00	17.00	
APS	0.05	0.05	
Total	20.05	20.05	
Internal, organic phase, wt.%			
Toluene	79.90	79.90	
TEMED (adding after HIPE formation)			
	0.05	0.05	
Appearance after polymerization	Flow-free, monolithic	Viscous emulsion	

To verify the reactivity of the Fe_3O_4 -A, two control HIPEs (recipes in Table S1) were prepared and then were polymerized, with procedures the same as that for mPT-X preparation. Results found monolithic gel was formed form Control 1 but not from Control 2, indicating the Fe_3O_4 -A serving as crosslinker.

Fig. S4. Void diameter distributions of the mPT-Xs and PT-0.

Movie S1: Moving a dry mPT-4 disc using a magnetic bar from the outside of a centrifuging tube.