Supporting Information

for

Synthesis of an amphiphilic copolymer using biopolymer-dextran via a combination of

ROP and RAFT techniques

Puja Das Karmakar^a, Sagar Pal^{a*}

^a Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, India-826004.

a*Corresponding Author: Tel: +91-326-2235769; E-mail: sagarpal@iitism.ac.in

Experimental:

Synthesis of dextran-based macroinitiator (DXAM)

1 g dextran [¹H-NMR (D₂O, 400 MHz) δ (ppm): 4.98 (–CH, glycoside proton; H1); 4.85 (– OH4); 4.77 (–OH2); 3.99-4.01 (–CH₂, H6); 3.91–3.94 (–CH, H5); 3.75-3.78 (–CH, H3) and 3.51-3.71 (–CH, H2,4)]¹ was dissolved in DMSO (30 mL). Afterwards, diisopropylamine (10 mL, 70 mmol) was poured into the solution and stirred overnight. Then 2-bromo-2-methyl-propionyl bromide (0.15 mL, 1.5 mmol) was dropwise added into the reaction mixture in presence of ice bath. The reaction was continued for 8h at room temperature. Then the precipitation of the solution mixture was accomplished in excess acetone followed by the filtration. The collected filtrate was dried in vacuum oven at 55 °C (yield: 0.76 g).

[¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm): 4.98 (–CH, glycoside proton; $\int 1.19$, H1); 4.67 ($\int 1.17$, –OH4); 4.59 ($\int 1.34$, –OH2); 3.75 (–CH₂, $\int 1.23$, H6); 3.62 (–CH, $\int 1.47$, H5); 3.57 (–CH, $\int 1.36$, H3); 3.16-3.21 (–CH, $\int 2.71$, H2,4); 2.08 (–CH₃, $\int 3.24$, H7,8)].

The conversion degree (%) was calculated using *eq.* S1 from the integration value of ¹H-NMR spectrum of dextran-based macroinitiator (Fig. S5) and the value is 32.9 %.

Conversion degree (%) =
$$\frac{I_{H}(\text{methylene group})}{I_{(-OH^{2})} + I_{(-OH^{4})} + I_{H}(\text{methylene group})} \times 100$$
(S1)

Synthesis of dextran-based RAFT agent (DXAR)

Dextran-based macroinitiator (DXAM) was used to prepare DXAR. At first, 0.15 g DXAM was completely dissolved in DMSO (25 mL). Then PEX (0.5 g, 3.1 mmol) was poured into the solution and stirred for 24 h at 60 °C. Then, the precipitation of the reaction mixture

was completed in acetone and filtered. Then the filtrate was dried in vacuum oven at 55 °C (yield: 0.22 g).

[¹H-NMR (d₆-DMSO, 400 MHz) δ (ppm): 4.89 (–CH, glycoside proton; $\int 1.00$, H1); 4.63 ($\int 0.98$, –OH4); 4.51 ($\int 0.82$, –OH2); 3.70 (–CH₂, $\int 1.26$, H6); 3.58 (–CH, $\int 0.68$, H5); 3.52 (–CH₂, $\int 0.50$, H9); 3.45 (–CH, $\int 1.24$, H3); 3.12-3.17 (–CH, $\int 1.76$, H2,4); 1.22 (–CH₃, $\int 3.88$, H7,8); 1.16 (–CH₃, $\int 2.68$, H10)].

The conversion degree (%) was calculated using *eq*. S1 from the integration value of ¹H-NMR spectra of DXAR (Fig. S6) and the value is 21.7 %.

Synthesis of HPMA-PCL

HPMA was used as initiator for polymerization of ε -caprolactone. A solution of ε -caprolactone (5.15 g, 45 mmol) and HPMA (1.07 g, 7.4 mmol) was mixed and stirred at 80 °C for 2h in an inert atmosphere. Then, Sn(Oct)₂ (0.125 g, 0.31 mmol) was added into the solution mixture. After that, the whole reaction mixture was stirred for 12h at 140 °C in presence of N₂. Afterwards, the developed product was dissolved in DMF followed by precipitation in methanol and filtered. Finally, the filtrate was dried in vacuum oven at 55 °C (yield: 0.90 g).

The integration and peak values of HPMC-PCL for before and after precipitation are assigned below:

Before precipitation: [¹H-NMR (CDCl₃, 400 MHz,) of HPMA-PCL δ (ppm): 6.27 (=CH, \int 1.26, H11b); 5.70 (=CH, \int 1.18, H11a); 4.66 (-CH₂, \int 1.78, H13); 3.87 (-CH₂, \int 0.58, H15); 3.64 (-CH₂, \int 2.03, H20); 3.12 (-CH₂, \int 2.33, H16); 2.14 (-CH₃, \int 2.22, H12); 1.31 (-CH₂, \int 2.34, H14); 1.28 (-CH₂, \int 2.34, H17); 1.28 (-CH₂, \int 1.42, H19); 1.22(-CH₂, \int 2.02, H18)]. After precipitation: [¹H-NMR (CDCl₃, 400 MHz,) δ (ppm): 6.07 (=CH, \int 1.09, H11b); 5.51 (=CH, \int 1.09, H11a); 4.95 (-CH₂, \int 1.61, H13); 3.98 (-CH₂, \int 0.58, H15); 3.58 (-CH₂, \int 2.00,

H20); 3.09 (-CH₂, ∫ 2.15, H16); 2.23 (-CH₃, ∫ 2.27, H12); 1.87 (-CH₂, ∫ 2.12, H14); 1.57 (-CH₂, ∫ 2.62, H17); 1.30 (-CH₂, ∫ 2.08, H19); 1.15(-CH₂, ∫ 2.49, H18)].

¹H NMR spectroscopy has been performed before and after precipitation (Fig. S7 and Fig. S8) of the reaction to calculate (*eq.* S2) the degree of polymerization (DP) of poly(ϵ -caprolactone) by the following equation.

DegreeofPolymerization= $Total area of all peaks \times The number of attached methylene groups with end groupArea of peak corresponding to hydrogens attached to end groups(S2)$

Simultaneously, molecular mass by end group calculation (*eq.* S3) from ¹H NMR spectroscopy using following equation.

 $Mn = Formula weight of end group + (Formula weight of monomer \times DP)$ (S3)

Synthesis of Dextran-g-(PHPMA-co-PCL)

To prepare Dextran-*g*-(PHPMA-*co*-PCL), at first DXAR (0.5 g) was completely dissolved in 20.0 mL DMSO. Then, AIBN (0.012 g, 0.07 mmol) was added into the reaction vessel. Afterwards, modified monomer (HPMA-PCL) (3.0 g) was added and the reaction was continued for 24h. The precipitation of total solution was accomplished into acetone, filtered and filtrate was kept in vacuum oven to dry the product (yield=1.91 g). The probable schematic diagram is represented in Scheme 1. The reaction was performed in inert atmosphere of N₂.

The various chain length has been varied to obtain graft copolymers with different hydrophobic segments. The required amount of dextran-based RAFT agent: HPMA-PCL with feed ratio used in each reaction mixture are listed in Table S2. The Dextran-*g*-

(PHPMA-*co*-PCL)s are labelled by a numeric sub-index from 1 to 3, successively with increasing weight fraction of HPMA-PCL.

[¹H-NMR (d₆-DMSO, 400 MHz) of Dextran-*g*-(PHPMA-*co*-PCL)₁; δ (ppm): 4.93 (-CH, glycoside proton; $\int 1.08$, H1); 4.67 ($\int 2.94$, -OH4); 4.53 ($\int 2.48$, -OH2); 4.14 (-CH₂, $\int 1.96$, H13,15); 3.90 (-CH₂, $\int 2.24$, H9); 3.74 (-CH₂, $\int 2.26$, H6); 3.59 (-CH, $\int 2.57$, H3,5); 3.49 (-CH₂, $\int 2.92$, H20); 3.17 (-CH, $\int 1.66$, H2,4); 2.67 (-CH₂, $\int 1.43$, H11); 2.33(-CH₂, $\int 2.33$, H17); 2.04 (-CH₃, $\int 2.82$, H12); 1.88 (-CH₂, $\int 2.09$, H16); 1.23 (-CH₂, $\int 1.96$, H14); 1.15 (-CH₂, $\int 1.63$, H19); 1.14 (-CH₃, $\int 3.99$, H10); 1.08 (-CH₂, $\int 1.66$, H18); 1.06 (-CH₃, $\int 3.55$, H7,8)].

[¹H-NMR (d₆-DMSO, 400 MHz) of Dextran-*g*-(PHPMA-*co*-PCL)₂; δ (ppm): 4.92 (-CH, glycoside proton; $\int 1.05$, H1); 4.68 ($\int 2.20$, -OH4); 4.53 ($\int 2.82$, -OH2); 4.13 (-CH₂, $\int 4.29$, H13,15); 3.81 (-CH₂, $\int 2.01$, H9); 3.77 (-CH₂, $\int 1.81$, H6); 3.63 (-CH, $\int 1.88$, H3,5); 3.47 (-CH₂, $\int 2.52$, H20); 3.17 (-CH, $\int 1.60$, H2,4); 2.67 (-CH₂, $\int 1.48$, H11); 2.37(-CH₂, $\int 1.57$, H17); 2.33 (-CH₃, $\int 1.85$, H12); 2.30 (-CH₂, $\int 1.22$, H16); 2.17 (-CH₂, $\int 2.68$, H14); 2.08 (-CH₂, $\int 2.32$, H19); 2.04 (-CH₃, $\int 1.33$, H10); 1.23 (-CH₂, $\int 1.17$, H18); 1.10 (-CH₃, $\int 6.33$, H7,8)].

[¹H-NMR (d₆-DMSO, 400 MHz) of Dextran-*g*-(PHPMA-*co*-PCL)₃; δ (ppm): 4.93 (-CH, glycoside proton; $\int 1.27$, H1); 4.67 ($\int 1.86$, –OH4); 4.53 ($\int 1.12$, –OH2); 4.12 (–CH₂, $\int 4.01$, H13,15); 3.86 (–CH₂, $\int 1.80$, H9); 3.76 (–CH₂, $\int 2.42$, H6); 3.64 (–CH, $\int 2.34$, H3,5); 3.50 (–CH₂, $\int 2.18$, H20); 3.17 (–CH, $\int 4.48$, H2,4); 2.67 (–CH₂, $\int 1.68$, H11); 2.33 (–CH₂, $\int 1.94$, H17); 2.19 (–CH₃, $\int 3.14$, H12); 2.08 (–CH₂, $\int 1.80$, H16); 2.04 (–CH₂, $\int 2.19$, H14); 1.90 (–CH₂, $\int 2.40$, H19); 1.53 (–CH₃, $\int 3.21$, H10); 1.23 (–CH₂, $\int 2.41$, H18); 1.10 (–CH₃, $\int 6.07$, H7,8)].

The monomer conversion (%) of the copolymer were determine through gravimetric technique using eq. S4² (Table 1).

Monomer conversion (%) =
$$\frac{W_2}{W_1 \times 100}$$

(S4)

Here, W_2 indicates the weight of the Dextran-*g*-(PHPMA-*co*-PCL)₃ and W_1 signifies the weight of HPMA-PCL.

Also, the monomer conversion (%) and grafting efficiency (%) were evaluated from the integration value of ¹H-NMR spectra of HPMA-PCL (Fig. S8) and Dextran-*g*-(PHPMA-*co*-PCL)₃ (Fig. 2) using *eq.* S5³ and S6⁴ respectively (Table 1).

Monomer conversion (%) =
$$\frac{I_{H^{11}(\text{Dextran - }g - (\text{PHPMA - }co - \text{PCL}))}}{I_{H^{11}(\text{Dextran - }g - (\text{PHPMA - }co - \text{PCL}))} + I_{H^{11}(\text{HPMA - PCL})} \times 100}$$

(S5)

Here, ${}^{I}_{H^{11}(Dextran - g - (PHPMA - co - PCL))}$ is the total area of H¹¹ proton of Dextran-g-(PHPMA-co-PCL)₃ and ${}^{I}_{H^{11}(HPMA - PCL)}$ is the total area of H¹¹ proton of HPMA-PCL.

Grafting efficiency towards –OH groups (%) =
$$\frac{I_{H^{11(copolymer)}}}{I_{-OH^{2}} + I_{-OH^{4}}} \times 100$$

(S6)

Here, % grafting of graft copolymers was calculated (eq. S7) using following equation.

% Grafting =
$$\frac{I_{H^{11}(\text{copolymer})} - I_{H^{11}(\text{HPMA - PCL})}}{I_{H^{11}(\text{HPMA - PCL})} \times 100}$$

(S7)

Characterization techniques:

Gel permeation chromatography attached to multi angle light scattering spectrometer (GPC/MALS) (Model: BI-RI/620; Serial No. 15 105; Power: 90-260V 47-63 Hz, USA) was used to assess molecular mass (MW) and dispersity (Đ) of the synthesized polymers. The polymer solution was filtered [using Whatman syringe filter (0.45 μ m)] before injected into the column with a flow rate of 0.5 mL/min at 30 °C. The mobile phase was HPLC grade water. Dextran was used as standard to calibrate the GPC.

For the analysis of the synthesized copolymers, at first, the instrument was calibrated using dextran standard with known molecular mass. Then the calibration curve was constructed by logarithmic plot of that known molecular mass as a function of elution volume. After that the molecular mass of the synthesized copolymer was obtained using the calibration curve and observing the elution volume.

NMR spectrophotometer (400 MHz; Bruker, USA) was used to record the spectra in $DMSO-d_6$ and $CDCl_3$ as NMR solvents.

Critical micelle concentration (CMC) of the self-assembled copolymer was measured fluorometrically (Fluorescence spectrometer, Model: LS55; Make: Perkin Elmer, USA).

Field Emission Scanning Electron Microscopic (FESEM, Model: Zeiss Ultra 55cv FESEM, Make: Zeiss, Germany) was used to analyzed the surface morphology of the Dextran-*g*-(PHPMA-*co*-PCL)₃.

Transmission electron microscopic (TEM, Model: Talos F200X G2, Make: Thermo Fischer Scientific, USA) analyses were performed to investigate the surface morphology of the polymer. At first the synthesized Dextran-*g*-(PHPMA-*co*-PCL)₃ was dissolved in 5.0 mL tetrahydrofuran (THF) in a 50 mL round bottomed flask. Then 5.0 mL of water was added and sonicated for 10 min. Afterward, THF was evaporated using a rotary evaporator, and was obtained the polymer

suspension. Then, the polymer suspension was drop casted on carbon coated copper grid and dried for TEM analysis.

DLS analysis was performed using Nano Particle Size Analyzer (Horiba Scientific, Nano Partica, SZ -100, Japan) to determine the hydrodynamic diameter of the copolymer and DIP loaded copolymer. In aqueous environment, DLS analysis was performed.

DIP loading (%) and *in vitro* release rate of DIP were recorded through UV-visible spectrophotometer (UV-1800, Shimadzu, Japan).

Determination of CMC of Dextran-g-(PHPMA-co-PCL)₃

The copolymer concentrations were varied from 0.6 mg/L to 2 mg/L to determine the CMC of the self-assembled polymer. In fluorometric analysis, pyrene (at a fixed pyrene concentration of 2.9×10^{-6} M) was used as a probe in different polymer solution concentrations to determine the aggregation behaviour of polymer chains. The emission spectra were recorded at 374 (I₁) and 415 (I₃), as the larger sensitivity towards polarity of microenvironment than other peaks (I₂, 392, I₄, 445 and I₅, 462 nm).

Encapsulation of dipyridamole into copolymeric micelle and *in-vitro* release study

Dipyridamole (DIP) was used as a model hydrophobic drug to study the efficiency of selfassembled copolymer Dextran-*g*-(PHPMA-*co*-PCL) for loading, followed by release study. To prepare drug-loaded polymeric micelle, DIP was dissolved in acidic medium. The acidic solution of DIP was converted into basic medium by addition of NaOH and precipitates into cloudy particles.⁵⁻⁷ Then polymeric micellar solution was added dropwise into freshly precipitated DIP and the precipitate was disappeared rapidly. The copolymer-drug solution was kept on ice for 45 min, followed by transferred into water bath at 25 °C for 1 h. The feeding mass ratio of drug and micelles was varied for drug-loading and the solutions were filtered to remove the drug, which was not entrapped. DIP-loading capacity was evaluated by UV-vis spectral analysis of the filtrate.

The DIP-loading (%) and encapsulation efficiency (% EE) were calculate using *eq.* S8 and *eq.* S9, respectively.

$$DIP-loading (\%) = \frac{Weight of DIP - loaded drug in colymeric micelles}{Weight of dried copolymer} \times 100$$
(S8)
$$EE (\%) = \frac{Weight of DIP - loaded drug in colymeric micelles}{Weight of DIP taken} \times 100$$

(S9)

The *in-vitro* cumulative release of DIP from Dextran-*g*-(PHPMA-*co*-PCL) polymeric micelle was studied using dialysis technique with the help of Dissolution Test Apparatus (Lab India, Model: DS 8000). A DIP-loaded micellar solution (5 mL) was taken in dialysis tube with a molecular mass cutoff of 12,000 Da. The dialysis bag has been placed into two buffer solutions (pH 1.2 and 7.4) at fixed temperature 37 °C \pm 0.5 °C and stirred at 250 rpm. Aliquots (3 mL) of the buffer solutions were taken out at predetermined time intervals to examine the release rate of DIP and equal amount of corresponding buffer solution was added into the bath. Then the drug concentration was determined using UV-vis spectroscopy and the cumulative % DIP release (E_r) was calculated using *eq.* S10. The release study was repeated for three times and the release data revealed as average of three readings with \pm SD (n=3).

 $\frac{DIP \text{ release at certain time}}{\text{E}_{r}(\%) = \text{Total amount of DIP in copolymer}} \times 100$

(S10)

Results and discussion

Concentration	2.222	mg/ml (given)
dn/dc	unknown	mL/g
Duration	35.0	min
A ₂	5.00e-04	mL mol/g ²
Injection Volume	20.000	μL

System Information

System ID ISM	Dhanbad First	System Setup
Group ID		PUJA
Eluent		Water
Eluent Additive		
Flow Rate	0.500	mL/min

Calculation Options

Conc. Signal From	RI
Method	SLS
Concentration	given
dn/dc	measured

Calculation Limits

Baseline	4.87 to 10.49 mL
Integration	8.26 to 10.48 mL
Fit	8.26 to 10.48 mL

Fig. S1. MALS-GPC analysis of dextran-based macroinitiator.

Res	ults	
M _n	8.505e+04	g/mol
M _w	8.996e+04	g/mol
M _z	9.444e+04	g/mol
M _p	1.083e+05	g/mol
M _w /M _n	1.058	
M _z /M _w	1.050	
<m<sub>10</m<sub>	6.601e+04	g/mol
>M _{so}	1.173e+05	g/mol
/p	9.08	mL
Area _{RI}	6.228e-03	V*mL
Concentration	undetermined	mg/ml
dn/dc	0.0919	mL/g
Sample Recovery	undetermined	%
η]	undetermined	mL/g
<rg>n</rg>	2.426e+01	nm
<rg>w</rg>	2.835e+01	nm
<rg>z</rg>	3.232e+01	nm

Concentration dn/dc u Duration A₂ S Injection Volume

1.374 mg/ml (given) unknown mL/g 31.0 min 5.00e-04 mL mol/g² 20.000 μL

Calculation Options

Conc. Signal From	RI
Method	SLS
Concentration	given
dn/dc	measured

System Information

System ID ISM	Dhanbad	First	System	Setup
Group ID				PUJA
Eluent				Water
Eluent Additive				
Flow Rate		0.500	mL/mi	n

Calculation Limits

Baseline Integration Fit 8.32 to 12.99 mL 8.32 to 9.28 mL 8.32 to 9.28 mL

Fig. S2. MALS-GPC analysis of dextran-based RAFT agent.

Res	ults	
A _n	8.572e+03	g/mol
л.,	1.067e+04	g/mol
A _z	1.441e+04	g/mol
A p	6.288e+03	g/mol
M _w /M _n	1.244	
Az/Mw	1.351	
(M ₁₀	6.251e+03	g/mol
M _{so}	2.729e+04	g/mol
/p	9.78	mL
rea _{RI}	1.462e-01	V*mL
Concentration	undetermined	mg/mL
in/dc	0.7299	mL/g
Sample Recovery	undetermined	%
η]	undetermined	mL/g
Rg>n	1.246e+02	nm
<rg>w</rg>	1.205e+02	nm
Rg>z	1.146e+02	nm

Concentration	4.062	mg/ml (given)
dn/dc	unknown	mL/g
Duration	42.0	min
A ₂	5.00e-04	mL mol/g ²
Injection Volume	20.000	μL

System mormation	Syst	tem	Int	forma	tion
------------------	------	-----	-----	-------	------

System ID ISM Dr	nanbad First	System Setup
Group ID		PUJA
Eluent		Water
Eluent Additive		
Flow Rate	0.500	mL/min

Calculation Options

Conc. Signal From	RI
Method	SLS
Concentration	given
dn/dc	measured

Calculation Limits

Daseline
Integration
Fit

2.45 to 15.13 mL 7.22 to 10.70 mL 7.22 to 10.70 mL

Fig. S3. MALS-GPC analysis of HPMA-PCL.

Concentration	0.536	mg/ml (given)
dn/dc	unknown	mL/g
Duration	32.0	min
A ₂	5.00e-04	mL mol/g ²
Injection Volume	20.000	μ

System Information

System ID ISM	Dhanbad	First	System	Setup
Group ID				PUJA
Eluent				Water
Eluent Additive				
Flow Rate		0.500	mL/mi	n

Calculation Options

Conc. Signal From	RI
Method	SLS
Concentration	given
dn/dc	measured

Calculation Limits

Baseline	3.58 to 7.14 mL
Integration	5.88 to 7.14 mL
Fit	5.88 to 7.14 mL

Fig. S4. MALS-GPC analysis of Dextran-g-(PHPMA-co-PCL)₃.

Fig. S5. ¹H NMR spectrum of dextran-based macroinitiator.

Fig. S6. ¹H NMR spectrum of dextran-based RAFT agent.

Fig. S7. ¹H NMR spectrum of HPMA-PCL (before precipitation).

Fig. S8. ¹H NMR spectrum of HPMA-PCL (after precipitation).

Fig. S9. ¹H NMR spectrum of Dextran-*g*-(PHPMA-*co*-PCL)₁.

Fig. S10. ¹H NMR spectrum of Dextran-*g*-(PHPMA-*co*-PCL)₂.

Fig. S11. Steady state emission intensities of pyrene at various copolymer [Dextran-g-(PHPMA-

co-PCL)₃] concentrations.

Fig. S12. TEM analysis of Dextran-g-(PHPMA-co-PCL)₃ after loading of DIP.

Fig. S13. Cumulative release (%) of DIP from graft copolymers [Dextran-*g*-(PHPMA-*co*-PCL)₁ and Dextran-*g*-(PHPMA-*co*-PCL)₂].

Supporting Tables

Table S1. Molecular mass and degree of polymerization data of HPMA-PCL before precipitation
and after precipitation.

HPMA-PCL	Mn (g/mol)	DP
Before precipitation	7801.77	67.24
After precipitation	8030.41	69.31

 Table S2. % Grafting and % DIP release of various synthesised copolymers.

Sample	Feed	%Grafting (using	% DIP release at 7.4
	ratio ^a	¹ H NMR)	
DHP ₁	1:2	31.2	70.3
DHP ₂	1:4	35.8	68.4
DHP ₃	1:6	54.1	60.7

Feed ratio a = for DXAR: HPMA-PCL

Table S3. Loading (%), encapsulation efficiency (%) and hydrodynamic diameter of dipyridamole-loaded Dextran-g-(PHPMA-co-PCL)₃

	DIP/polymer	Loading	EE (%)	Hydrodynamic
Drug	ratio	(%)		diameter
				(nm)
	0	0	0	82.4
	1:1	3.7	3.7	90.7
Dipyridamole	1:2	9.0	18.1	98.8
	1:3	13.0	39.0	103.3
	1:4	19.7	78.7	111.2

References

- 1. P. D. Karmakar and S. Pal, Int. J. Biol. Macromol. 2021, 183, 718-726.
- 2. R. Guo, E. Yu, J. Liu and Z. We, RSC Adv., 2017, 7, 24022–24029.
- 3. O'Reilly, R. (2014). NMR Spectroscopy for polymer chemists.
- 4. D. Das, A.P. Rameshbabu, P. Patra, P. Ghosh, S. Dhara and S. Pal, Polymer, 2016, 107, 282-291.
- 5. J. Zeng, P. Du and P. Liu, RSC Adv., 2013, 3, 19492-19500.
- 6. Y. Tang, S.Y. Liu, S.P. Armes and N.C. Billingham, Biomacromolecules, 2003, 4, 1636–1645.
- 7. W. Kim, J. Xiao and E.L. Chaikof, Langmuir, 2011, 27, 14329-14334.