Supporting Information

Effect of Radical Copolymerization of the (Oxa)norbornene End-group of RAFT-prepared

Macromonomers on Bottlebrush Copolymer Synthesis via ROMP

Mohamed Naguib,^{a,b} Kate L. Nixon,^{a,c} and Daniel J. Keddie^{*a}

^aSchool of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom, ^bPolymer and Pigments Department, National Research Centre, Cairo, 12622, Egypt., ^cSchool of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom

Table of Contents:

Figure S1: Representative stacked ¹ H NMR plots illustrating the resolved vinylic resonances for the methyl acrylate
and (a) oxanorbornene (6.50 ppm) and (b) norbornene (6.28 ppm) end-groups for experiments reported in Figure
1, and Table1, Entries 1 and 2Page 2
Table S1: Details of polymers prepared via RAFT PolymerizationPage 3
Figure S2: Pseudo-first order kinetics plots (left) for conversion of monomer (red circles) and (oxa)norbornene
end-group (black squares), and SEC chromatograms illustrating the evolution of the molar mass distribution with
conversion (right) for polymerizations of MA (a, b), BA (c,d) and St (e,f) with the RAFT agents 7-ONb (a,c,e) or 8-
Nb (b,d,f). Polymerizations of MA and BA performed with [M]:[RAFT] = 200:1; polymerizations of St performed
with [M]:[RAFT] = 250:1Page 4-5
Table S2: Details of DP 50 targeted bottlebrush polymers prepared via ROMP Page 6

Figure S2: SEC cl	hromatograms of macromo	nomers (black) and bottlebrus	sh copolymers (blue) for polym	nerizations
of (a) PMA-7-O	Nb, (b) PMA-8-Nb, (c) PBA-7	'-ONb , (d) PBA-8-Nb , (e) PSt-7	-ONb, and (f) PBA-8-Nb. Poly	merization
were	performed	at:	[Macromonomer]:[G3]	=
50:1				Page 6
References				Page 7

Figure S1: Representative stacked ¹H NMR plots for illustrating the resolved vinylic resonances for the methyl acrylate and (a) oxanorbornene (~6.50 ppm) and (b) norbornene (~6.28 ppm) end-groups for experiments reported in Figure 1, and Table1, Entries 1 and 2.

Entry	v monomer	[M] (mol L ⁻ 1)	RAFT agent	Т (°С)	[M] ₀ :[RAFT] ₀ :[AIBN] ₀	time (h)	M conv. (%) ^a	M _n (calc) ^b	M_{n}^{c}	Ðc	<i>L</i> % (ω- end) ^d	DB% (NMR) ^{a,e}	DB % (SEC) ^{e,f}
1	MA	6.79	7-ONb	60	200:1:0.1	0.5	22	3960	5900	1.16	99.9	9	5.2
						1.5	51	9320	12500	1.24	99.6	20	17.6
						2.5	73	13100	18800	1.36	99.4	31	28.8
						3.5	81	14500	22500	1.50	99.2	47	37.8
						5	88	15700	25700	1.68	98.9	62	44.3
2	MA	6.79	8-Nb	60	200:1:0.1	0.5	6	1570	1400	1.18	99.9	1	0
						1.5	39	7260	7900	1.12	99.6	10	2.6
						2.5	74	13300	15300	1.20	99.4	17	11.5
						3.5	82	14700	18000	1.23	99.2	23	13.7
						5	88	15700	19400	1.30	98.9	26	19.6
3	BA	4.68	7-ONb	60	200:1:0.1	0.5	32	8740	10100	1.24	99.9	13	5.8
						1.5	60	15900	20900	1.41	99.6	27	24.0
						2.5	73	19300	28100	1.46	99.4	39	33.4
						3.5	77	20300	32600	1.56	99.2	42	38.9
						4.5	82	21600	35900	1.67	99.0	46	43.4
						6	88	23100	37300	1.75	98.7	51	47.5
4	BA	4.68	8-Nb	60	200:1:0.1	0.5	19	5410	5400	1.19	99.9	6	0
						1.5	55	14600	16400	1.17	99.6	19	6.2
						2.5	72	19000	21400	1.22	99.4	21	10.7
						3.5	79	20800	23700	1.27	99.2	24	14.5
						4.5	84	22100	26200	1.28	99.0	27	17.4
						6	89	23400	28200	1.32	98.7	29	20.6
5	St	8.73	7-ONb	65	250:1:0.1	2	3	1300	1900	1.20	99.1	6	0.7
						4	9	2900	3400	1.19	98.3	9	1.9
						7	16	4700	5600	1.22	97.4	12	7.4
						10	23	6500	7400	1.24	96.6	16	12.5
						22.5	39	10700	13800	1.43	94.7	34	31.1
						34	50	13600	18000	1.64	94.0	39	43.6
6	St	8.73	8-Nb	65	250:1:0.1	2	4	1580	1900	1.18	99.1	0	1
						4	9	2880	3300	1.16	98.3	0	0
						7	17	4970	5300	1.12	97.4	0	0
						10	23	6530	6800	1.12	96.6	1	0
						22.5	43	11700	10900	1.12	94.7	1	0
						34	51	13800	12900	1.14	94.0	1	1.6

Table S1: Details of polymers prepared via RAFT Polymerization

^aCalculated from¹H NMR; ^b M_n (calc) = ([M]₀ – [M]_t)/([RAFT]₀) × MW_{monomer}+ MW_{RAFT}; ^cSEC THF eluent, *T* = 40°C (data reported in polystyrene equivalents); ^dL%= ([CTA]₀/([CTA]₀+ *df* ×[I]₀ × 1-e^{kdt}) × 100%, ¹⁻² where *f* is the initiator efficiency (= 0.7), ³*d* is number of chains formed by radical-radical termination (= 1), ⁴and k_d = 9.67 × 10⁻⁶ s⁻¹at 60°C⁵or k_d = 1.95 × 10⁻⁵ s⁻¹at 65°C (calculated from Arrhenius parameters)⁵; ^eDB% = percentage degree of branching; ^fcalculated following deconvolution of SEC chromatograms.

Figure S2: Pseudo-first order kinetics plots (left) for conversion of monomer (red circles) and (oxa)norbornene end-group (black squares), and SEC chromatograms illustrating the evolution of the molar mass distribution with reaction time (right) for polymerizations of MA (a, b), BA (c,d) and St (e,f) with the RAFT agents **7-ONb** (a,c,e) or **8-Nb** (b,d,f). Polymerizations of MA and BA performed with [M]:[RAFT] = 200:1; polymerizations of St performed with [M]:[RAFT] = 250:1.

Table S2: Details of DP 50 targeted bottlebrush polymers prepared via ROMP

Entry ^a	Macromonomer	MM <i>M</i> _n	Residual MM %	M _n (GPC)	Ðc
	(MM)	(g mol⁻¹) ^b		(g mol⁻¹) ^c	
1	PMA-7-ONb	2700	15	>197000 ^d	>1.49 ^d
2	PMA-8-Nb	3100	5	187000	1.45
3	PBA-7-ONb	4300	54	>219000 ^d	>1.36 ^d
4	PBA-8-Nb	3200	4	198000	1.36
5	PSt-7-ONb	2900	15	66000	1.54
6	PSt-8-Nb	2800	5	>114000 ^d	>1.77 ^d

^a[MM] = 0.33M in THF, [MM]/[G3]=50, t = 3 h, ^bCalculated from ¹H NMR; ^cFrom SEC THF eluent, *T* = 40°C (data reported in polystyrene equivalents); ^dpeak truncated due to the sample reaching the exclusion limit of the SEC column

Figure S3: SEC chromatograms of macromonomers (black) and bottlebrush copolymers (blue) for polymerizations of (a) **PMA-7-ONb**, (b) **PMA-8-Nb**, (c) **PBA-7-ONb**, (d) **PBA-8-Nb**, (e) **PSt-7-ONb** and (f) **PBA-8-Nb**. Polymerization were performed at: [Macromonomer]:[G3] = 50:1.

References

 Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S., Exploitation of the Degenerative Transfer Mechanism in RAFT Polymerization for Synthesis of Polymer of High Livingness at Full Monomer Conversion. *Macromolecules* 2014, 47 (2), 639-649.
Gardiner, J.; Martinez-Botella, I.; Tsanaktsidis, J.; Moad, G., Dithiocarbamate RAFT agents with broad applicability - the 3,5dimethyl-1H-pyrazole-1-carbodithioates. *Polym. Chem.* 2015.

 Houshyar, S.; Keddie, D.; Moad, G.; Mulder, R.; Saubern, S.; Tsanaktsidis, J., The Scope for Synthesis of Macro-RAFT Agents by Sequential Insertion of Single Monomer Units. *Polymer Chemistry* **2011**, *Published as an Online Article*, DOI: 10.1039/C2PY00529H
Moad, G.; Solomon, D. H., 5 - Termination. In *The Chemistry of Radical Polymerization (Second Edition)*, Elsevier Science Ltd: Amsterdam, 2005; pp 233-278.

5. Moad, G.; Solomon, D. H., 3 - Initiation. In *The Chemistry of Radical Polymerization (Second Edition)*, Elsevier Science Ltd: Amsterdam, 2005; pp 49-166.