Supplementary information

Contents

Figure S1. ¹³C NMR spectrum of poly(DEGV).

Figure S2. ¹³C NMR spectrum of poly(HBVE).

Figure S3. ¹³C NMR spectrum of poly(HEVE).

Figure S4. ¹H NMR spectrum of polymerization mixture of DEGV.

Table S1. ¹H chemical shifts of vinyl group adjacent to ether oxygen in vinyl ethers.

Figure S5. ¹H NMR spectrum of polymerization mixture of IBVE.

Figure S6. ¹³C NMR spectrum of poly(IBVE).

Figure S1. ¹³C NMR spectrum of poly(DEGV) in D_2O . The inset shows the chemical structures of the poly(DEGV) with full peak assignments. The structures correspond to those estimated in Figure S1.

Figure S2. ¹³C NMR spectrum of poly(HBVE) in D_2O . The inset shows the chemical structures of the poly(HBVE) with full peak assignments. The structures correspond to those estimated in Figure S2.

Figure S3. ¹³C NMR spectrum of poly(HEVE) in D_2O . The inset shows the chemical structures of the poly(HEVE) with full peak assignments. The structures correspond to those estimated in Figure S3.

Figure S4. ¹H NMR spectrum (in D_2O at 20 °C) of polymerization mixture of DEGV. The acetal contents (%) were calculated by the peak intensity ratio of the methyl proton of (poly)acetals at 1.1–1.2 ppm and the methylene proton of the main chain derived from poly (hydroxyl-functional vinyl ether) at 1.3–1.9 ppm.

Table S1. ¹ H Chemical Shifts of	Vinyl Group	Adjacent to Ether	Oxygen in	Vinyl Ethers
---	-------------	-------------------	-----------	--------------

Manaman	δ ^a (ppm)			
Monomer	tran (H ^a)	cis (H ^b)	gem (H ^c)	а
DEGV	4.16	4.36	6.52	H C
HBVE	4.15	4.37	6.51	▶ H
HEVE	4.17	4.38	6.55	^O .R
IBVE	3.95	4.17	6.44	

^{*a*} Measured on a ¹H NMR (400 MHz) spectrometer at 20 °C using a coaxial system (reference: CDCl₃ with 0.1% TMS). All the signals are averaged shift values of identical signals. Protons H^a, H^b, and H^c are shown on the right side of Table S1.

Figure S5. 1H NMR spectrum (in CDCl₃ at 20 °C) of polymerization mixture of IBVE.

The selectivity (%) is obtained by integration values of $100 \times (g/2)/[c + (g/2) + (l/3)]$. The conversion (%) can be calculated by integration values of $100 \times (f/2)/[c + (g/2)]$ in the case of 100 % selectivity.

The structural identification of aldehyde as the terminal end-group of poly(IBVE) is not always performed from its mass spectrum, especially when other oligomers with the same molecular weight may be formed. Notably, an intensive peak assignable to - CH_2C -=OCH₂- protons was observed unexpectedly at 2.3-2.8 ppm although the peak assignable to the terminal -CHO end-group generated via β -scission of growing polymer radical as a presumed chain-end forming reaction appeared only weakly at 9.8 ppm.

Figure S6. 1H NMR spectrum (in CDCl₃ at 20 °C) of poly(IBVE).