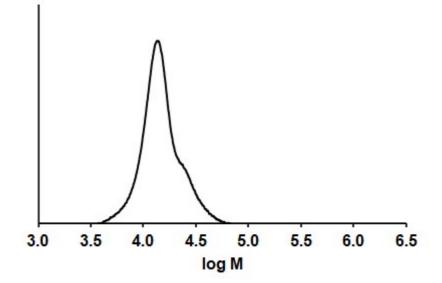
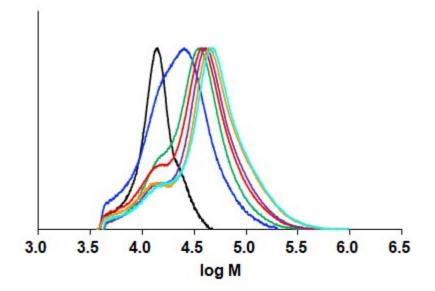
Supporting Information


Synthesis of low glass transition temperature worms comprising a poly(styrene-*stat-n*-butyl acrylate) core segment via polymerization-induced self-assembly in RAFT aqueous emulsion polymerization

Hyun Jin Kim¹, Fumi Ishizuka¹, Rhiannon P. Kuchel², Shunsuke Chatani³, Hiroshi Niino³, Per B. Zetterlund^{1,*}


¹ Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.

² Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia.

³ Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan.

Fig. S1 Molecular weight distributions (w(log M) vs. log M) of P(AA-*stat*-PEGA)-TTC macroRAFT agent ($M_n = 13,400 \text{ g/mol}; D = 1.20$).

Fig. S2 Molecular weight distributions (w(log M) vs. log M) of RAFT aqueous emulsion polymerization of styrene and *n*BA in the presence of P(AA-*stat*-PEGA)-TTC macroRAFT agent with different [hydrophobic monomer]₀/[macroRAFT]₀ (macroRAFT agent, [hydrophobic monomer]₀/[macroRAFT]₀ = 50 (B-1), 100 (B-2), 130 (B-3), 150 (B-4), 170 (B-5), 200 (B-6) from left to right) (Table 2).

#	Crosslinker	[M] ₀ /[crosslinker] ₀ /[RAFT] ₀	Conv. ^a (%)	$M_{ m n,th}{}^{ m b}$ (g/mol)	Solids content ^c (%)			
<i>Entries</i> C-x and D-x: crosslinker added at $t = 0$ h								
C-1	PEGDA	100/1/1	73 ^a	20,200 ^b	12.6			
C-2	PEGDA	100/2.5/1	98 ^a	23,100 ^b	12.7			
D-1	EGDA	100/0.5/1	92	22,000	12.7			
D-2	EGDA	100/1/1	89	22,800	12.5			
D-3	EGDA	100/10/1	89	23,300	13.4			
<i>Entreis</i> E-x and F-x: crosslinker added at $t = 2$ h								
E-1	PEGDA	100/1/1	69 ^a	19,800 ^b	12.6			
E-2	PEGDA	100/10/1	100 ^a	25,500 ^b	13.7			
F-1	EGDA	100/3/1	92	22,100	12.6			
F-2	EGDA	100/5/1	93	23,100	12.9			
F-3	EGDA	100/10/1	100	24,700	13.3			

Table S1 Experimental conditions and results of RAFT aqueous emulsion polymerization of styrene and *n*BA in the presence of P(AA-*stat*-PEGA) macroRAFT agent at 80 °C for 4 h; pH 5, molar ratio AA/PEGA = 50/50, styrene/*n*BA = 70/30, [macroRAFT]₀ = 6.2 mmol/L, [NaHCO₃]₀/[ACPA]₀ = 3.5.

^a Monomer conversion by gravimetry. Note that PEGDA was non-volatile and was excluded from calculation of monomer conversion determined by gravimetry.

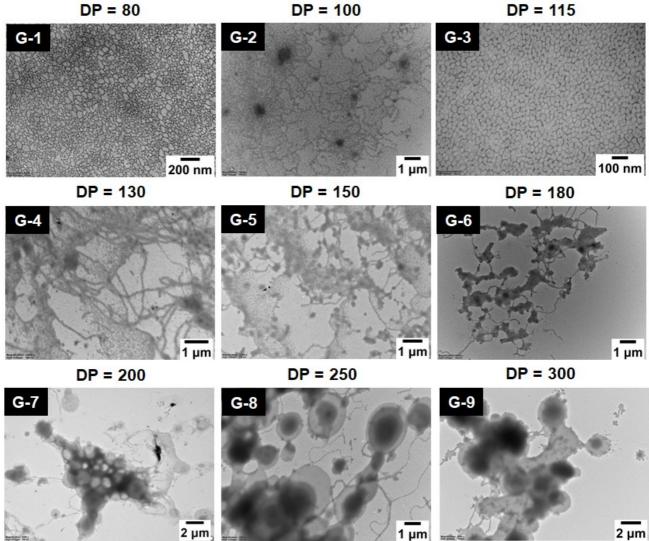
^b Theoretical $M_{n,th}$ calculated using monomer conversion obtained from gravimetry via eqn (S1).

^c Solids content in wt% based on total weight.

The theoretical number-average molecular weight $(M_{n,th})$ was determined by eqn (S1):

$$M_{n,th} = M_{macroRAFT} + \frac{\left(X_{conv} \cdot [styrene]_0 \cdot M_s\right) + \left(X_{conv} \cdot [nBA]_0 \cdot M_{nBA}\right) + \left(X_{conv} \cdot [EGDA]_0 \cdot M_{EGDA}\right)}{\left[macroRAFT\right]_0}$$
(S1)

where $M_{\text{macroRAFT}}$, M_{S} , $M_{n\text{BA}}$, M_{EGDA} are the molar masses of macroRAFT agent, styrene, *n*BA, and EGDA, respectively, [macroRAFT]₀, [styrene]₀, [*n*BA]₀, [EGDA]₀ are the initial concentrations of macroRAFT agent, styrene, *n*BA, and EGDA respectively, and X_{conv} denotes total monomer conversion determined by gravimetry.


Table S2 Experimental conditions and results of RAFT aqueous emulsion polymerization of styrene and *n*BA in the presence of P(AA-*stat*-PEGA) macroRAFT agent at 80 °C, EGDA added at t = 2 h; pH 5, molar ratio AA/PEGA = 50/50, styrene/nBA = 20/80, EGDA/macroRAFT = 5/1, [macroRAFT]₀ = 6.2 mmol/L, $[NaHCO_3]_0/[ACPA]_0 = 3.5.$

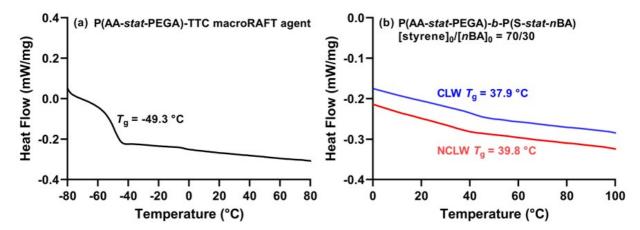
#	DP	<i>t</i> (h)	Conv. ^a (%)	$M_{ m n,th}{}^{ m b}$ (g/mol)	Solids content ^c (%)
G-1	80	4	100	22,300	12.2
G-2	100	4	100	24,600	13.4
G-3	115	4	98	26,300	14.2
G-4	130	4	100	28,800	15.2
G-5	150	4	100	30,800	16.1
G-6	180	4	100	34,500	17.9
G-7	200	4	96	35,900	18.7
G-8	250	4	94	41,200	21.1
G-9	300	4	93	46,600	23.5

^a Monomer conversion by gravimetry.

^b Theoretical $M_{n,th}$ calculated using monomer conversion obtained from gravimetry via eqn (S1). с

с	Solids	content	in	wt%	based	on	total	weight.
---	--------	---------	----	-----	-------	----	-------	---------

Fig. S3 TEM images of nanoparticles synthesized via RAFT aqueous emulsion polymerization of styrene and *n*BA ([styrene]₀/[*n*BA]₀ = 20/80, solids content varied from 12.2% to 23.5%) in the presence of P(AA-*stat*-PEGA)-TTC macroRAFT agent at pH 5 with EGDA ([EGDA]₀/[macroRAFT]₀ = 5/1) after 2 h of the polymerization with different [hydrophobic monomer]₀/[macroRAFT]₀ ([hydrophobic monomer]₀/[macroRAFT]₀ = 80 (G-1), 100 (G-2), 115 (G-3), 130 (G-4), 150 (G-5), 180 (G-6), 200 (G-7), 250 (G-8), 300 (G-9)). Scale bars: G-1 = 200 nm, G-2 = 1 µm, G-3 = 100 nm, G-4 = 1 µm, G-5 = 1 µm, G-6 = 1 µm, G-7 = 2 µm, G-8 = 1 µm, G-9 = 2 µm.


Table S3 Experimental conditions and results of RAFT aqueous emulsion polymerization of styrene and *n*BA in the presence of P(AA-*stat*-PEGA) macroRAFT agent at 80 °C for 4 h, EGDA added at t = 2 h; pH 5, molar ratio AA/PEGA = 50/50, styrene/*n*BA = 20/80, EGDA/macroRAFT = 5/1, [macroRAFT]₀ = 6.2 mmol/L, [NaHCO₃]₀/[ACPA]₀ = 3.5.

#	DP	t (h)	Conv.ª (%)	$M_{ m n,th}{}^{ m b}$ (g/mol)	Solids content ^c (%)
H-1	130	4	100	28,800	15.2
H-2	130	4	100	28,300	24.7
Н-3	130	4	91	26,800	32.7

^a Monomer conversion by gravimetry.

^b Theoretical $M_{n,th}$ calculated using monomer conversion obtained from gravimetry via eqn (S1).

^c Solids content in wt% based on total weight.

Fig. S4 DSC traces of (a) P(AA-*stat*-PEGA)-TTC maroRAFT agent, (b) P(AA-*stat*-PEGA)-*b*-P(S-*stat*-*n*BA) non-crosslinked worms (NCLW) and crosslinked worms (CLW) ([styrene]₀/[nBA]₀ = 70/30).