Supplementary Information

for

Trifluoromethoxy-substituted nickel catalysts for producing highly branched

polyethylenes: impact of solvent, activator and *N*,*N'*-ligand on polymer properties

Ming Liu,^{a,b} Randi Zhang,^a Yanping Ma,^a Mingyang Han,^{a,b} Gregory A. Solan^{*,a,c} Wenhong Yang,^a Tongling Liang^a and Wen-Hua Sun^{*,a,b,d}

^{*a*} Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn; Fax: +86-10-62618239; Tel: +86-10-62557955.

^b CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. Email: gas8@leicester.ac.uk

^d State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

	Table of Contents	Page
1.	¹³ C NMR spectra of the polyethylenes	S2
2.	¹⁹ F NMR spectra of Ni1 – Ni6	S5
3.	¹ H NMR spectra of Ni1 - Ni5	S 8
4.	Comparison of activity and M_w of the PE generated by Ni1 with structurally related nickel catalysts	S11
5.	References	S 11

1.¹³C NMR spectra of the polyethylenes

Figure S1 ¹³C NMR spectrum of PE-30_{MM/2µ/T} along with a segment of the assigned polymer backbone (run 4, Table 6); recorded in C₆D₄Cl₂ at 100 °C.

Figure S2 ¹³C NMR spectrum of PE-30_{MM/2µ/H} along with a segment of the assigned polymer backbone (run 11, Table 7); recorded in C₆D₄Cl₂ at 100 °C.

Figure S3 ¹³C NMR spectrum of PE-30_{MM/1µ/H} along with a segment of the assigned polymer backbone (run 12, Table 7); recorded in C₆D₄Cl₂ at 100 °C.

Figure S4 ¹³C NMR spectrum of PE-70_{MM/2µ/T} along with a segment of the assigned polymer backbone (run 11, Table 6); recorded in C₆D₄Cl₂ at 100 °C.

Figure S5 ¹³C NMR spectrum of PE-30_{E/2µ/T} along with a segment of the assigned polymer backbone (run 3, Table 9); recorded in C₆D₄Cl₂ at 100 °C.

Figure S6 ¹³C NMR spectrum of PE-30_{E/2 μ /H} along with a segment of the assigned polymer backbone (run 11, Table 10); recorded in C₆D₄Cl₂ at 100 °C.

--57.36

Figure S7 ¹³C NMR spectrum of PE-30_{MM/1µ/H} along with a segment of the assigned polymer backbone (run 12, Table 10); recorded in C₆D₄Cl₂ at 100 °C.

2.19F NMR spectra of Ni1 – Ni6

Figure S8 ¹⁹F NMR spectrum of Ni1 in CDCl₃ at room temperature.

Figure S10 ¹⁹F NMR spectrum of Ni3 in CDCl₃ at room temperature.

Figure S12 ¹⁹F NMR spectrum of Ni5 in CDCl₃ at room temperature.

Figure S13 ¹⁹F NMR spectrum of Ni6 in CDCl₃ at room temperature.

3. ¹H NMR spectra of Ni1 - Ni5

Figure S14 ¹H NMR spectrum of Ni1 in CDCl₃ at room temperature.

Figure S15 ¹H NMR spectrum of Ni2 in CDCl₃ at room temperature.

Figure S16 ¹H NMR spectrum of Ni3 in CDCl₃ at room temperature.

Figure S17 ¹H NMR spectrum of Ni4 in CDCl₃ at room temperature.

Figure S18 ¹H NMR spectrum of Ni5 in CDCl₃ at room temperature.

4. Comparison of activity and M_w of the PE generated by Ni1 with structurally related nickel catalysts

Figure S19 Comparison of activity and M_w of the polyethylene generated by Ni1 (R = OCF₃) with precatalyst **B** (Chart 1, R = *t*-Bu,¹ CHPh₂,² OMe³); all precatalysts were screened using MAO and under comparable conditions, 30 °C, P_{C2H4} = 10 atm, solvent = toluene

5. References

- Q. Mahmood, Y. Zeng, E. Yue, G. A. Solan, T. Liang, W.-H. Sun, Polym. Chem. 2017, 8, 6416– 6430.
- X. Wang, L. Fan, Y. Ma, C.-Y. Guo, G. A. Solan, Y. Sun and W.-H. Sun, Polym. Chem. 2017, 8, 2785–2795.
- R. Wu, Y. Wang, R. Zhang, C.-Y. Guo, Z. Flisak, Y. Sun, W.-H. Sun, Polymer 2018, 153, 574– 586.