Supporting Information

Polymerization-Induced Gelation process visualized by

Nontraditional Clustering-Triggered Emission

Liyang Zhao, Yuan Tian, Xiangnan Wang, Dingdong Liu, Yifan Xie, Jingang Hu^*

and Gang $\operatorname{Zou}\nolimits^*$

Author Affiliations

Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China. Corresponding author. Email: gangzou@ustc.edu.cn

Figure S1. ¹H NMR spectrum of NACHT.

Figure S2. ¹H NMR spectrum of monomer DMCAE.

Figure S3. ¹H NMR spectrum of poly(thioether).

Figure S4. ¹³C NMR spectrum of DMCAE monomer and polymer. The green rectangular area is enlarged on the right column.

Figure S5. FT-IR spectrum of poly(thioether).

Figure S6. GPC trace of poly(thioether).

Figure S7. 1H-NMR spectrum of poly-(1-(butylcarbamoyl)-3-mercaptopropylcarbamic acid allyl ester). The polymerization system remains solution instead of gel.

Figure S8. Time-dependent dynamic viscoelastic transformation of polymerizationinduced gelation process.

Figure S9. Time-dependent viscosity transformation of polymerization-induced gelation process.