## **Supporting information**

## A healable, re-cyclable and thermochromic epoxy resin for thermal-responsive smart windows

*Qi-Sheng Huang<sup>a</sup>, Pei-Chen Zhao<sup>a</sup>, Jian-Cheng Lai<sup>a</sup>, Xiao-Peng Zhang<sup>b</sup>, Cheng-Hui Li<sup>a,\*</sup>* 

 <sup>a</sup>State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

<sup>b</sup>Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, P. R. China.

\*Corresponding authors

E-mail: chli@nju.edu.cn



Figure S1. Scheme of synthetic route.



**Figure S2.** A. stress-strain curves of  $HDDE_{0.88}BGE_{0.12}$  Ni 8-1 and  $HDDE_{0.90}BGE_{0.10}$  Ni 8-1 at stretching speed of 10 mm/min; B. image of  $HDDE_{0.92}BGE_{0.08}$ -IMZ.



**Figure S3.** Synthetic route of HDDE<sub>0.9</sub>BGE<sub>0.1</sub>-BA (Top) and HDDE<sub>0.9</sub>BGE<sub>0.1</sub>-FFA (Bottom).



Figure S4. Images of  $HDDE_{0.9}BGE_{0.1}$ -BA (A);  $HDDE_{0.9}BGE_{0.1}$ -FFA (B);  $HDDE_{0.9}BGE_{0.1}$ -IMZ (C).



Figure S5. <sup>1</sup>H NMR of BGE, HDDE, AIMZ, HDDE<sub>0.9</sub>BGE<sub>0.1</sub>-IMZ (400MHz, DMSO), a, b, c represents the characteristic peaks of epoxy resin of BGE, HDDE,  $HDDE_{0.9}BGE_{0.1}$ -IMZ, respectively.



**Figure S6.** A. TG curves of epoxy resin with different cross-link densities; B. DSC curves of epoxy resin with different cross-link densities.



Figure S7. The sample self-adapts to the irregular surface.



**Figure S8.** A, C. temperature dependent rheology measurements of  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1 and 4-1; B, D. cyclic temperature-sweep rheology measurements of  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1 and 4-1 (temperature changing rate 2 °C/min).



**Figure S9.** Master curves of  $HDDE_{0.9}BGE_{0.1}$  Ni 4-1 (A),  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1 (B) at a reference temperature of 25 °C.



**Figure S10.** Stress relaxation of epoxy resin at different temperatures A.  $HDDE_{0.9}BGE_{0.1}$  Ni 4-1; B.  $HDDE_{0.9}BGE_{0.1}$  Ni 6-1; C.  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1; D. arrhenius plots of the characteristic relaxation time  $\tau^*$  versus 1000/T for epoxy resin.



**Figure S11.** A. storage modulus (G') and loss modulus (G") versus oscillation of  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1; B. continuous amplitude sweep experiment of  $HDDE_{0.9}BGE_{0.1}$  Ni 8-1, small amplitude scans (0.01 %), and large amplitude scans (10 %); C storage modulus (G') and loss modulus (G") versus oscillation of  $HDDE_{0.9}BGE_{0.1}$  Ni 4-1; D. continuous amplitude sweep experiment of  $HDDE_{0.9}BGE_{0.1}$  Ni 4-1; D. continuous amplitude scans (10 %), and large amplitude scans (0.001 %), and large amplitude scans (1 %).



**Figure S12.** A. stress-strain curves of the original and recycle of HDDE<sub>0.9</sub>BGGE<sub>0.1</sub> Ni 4-1; B. stress-strain curves of the original and self-healing of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 4-1; C. stress-strain curves of the original and recycle of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 8-1; D. stress-strain curves of the original and self-healing of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 8-1;



Figure S13. Recycle of coordination bonds modified epoxy resin.



Figure S14. The color of the sample changes reversibly between room temperature (bright blue) and 100  $^{\circ}$ C (dark green).



**Figure S15.** Variable temperature Fourier-transform infrared spectroscopy of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 4-1.



**Figure S16.** Variable temperature Fourier-transform infrared spectroscopy of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 8-1.



**Figure S17.** Variable temperature Fourier-transform infrared spectroscopy of HDDE<sub>0.9</sub>BGE<sub>0.1</sub>-IMZ.



Figure S18. Ni 2p 3/2 XPS spectra of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 6-1.



**Figure S19.** Ni 2p 3/2 XPS spectra of HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 4-1 (A); HDDE<sub>0.9</sub>BGE<sub>0.1</sub> Ni 8-1 (B).



Figure S20. The scheme of a simulate smart window.

## **Supporting movie**

**Supporting movie1.** The color changes from bright blue to dark green as the temperature rises from room temperature to 100 °C.

**Supporting movie2.** The color changes from dark green to bright blue as the temperature drops from 100 °C to room temperature.