Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Streamlined concept towards spatially resolved photoactivation of dynamic transesterification in vitrimeric polymers by applying thermally stable photolatent bases

David Reisinger,^a Kurt Dietliker,^b Marco Sangermano^c and Sandra Schlögl*^a

^a Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria.

^b SCD Dr. Sommerlade Chemistry Design GmbH, Rheinfeldener Straße 27, 79395 Neuenburg am Rhein, Germany.

^c Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10124 Torino, Italy.

E-mail: sandra.schloegl@pccl.at

Supplementary Tables

Table S1 Spectral intensity distribution of the irradiation source used. All listed values for the UVC, UVB, UVA and UVV wavelength region are average values calculated from ten individal measurements.

UVC ^[a]	UVB ^[b]	UVA ^[c]	UVV ^[d]	Total intensity ^[e]
[mW/cm ²]	[mW/cm ²]	[mW/cm²]	[mW/cm²]	[mW/cm ²]
7	13	305	382	707

[a] 250-260 nm, [b] 280-320 nm, [c] 320-390 nm, [d] 395-445 nm, [e] 250-445 nm.

Supplementary Schemes

Scheme S1 Mechanism proposed in the literature for curing of thiol-epoxy resins by nucleophilic tertiary amines¹: [a] direct deprotonation of the thiol group, [b] nucleophilic ring opening of an epoxy group by a nucleophilic tertiary amine catalysed by hydroxy groups, [c] nucleophilic ring opening of an epoxy group by a thiolate group, followed by a protonation of the generated alkoxide by a thiol group or the protonated tertiary amine, resulting in the formation of a β -hydroxythioether link, [d] nucleophilic displacement of the initiator i.e. regeneration of the tertiary amine.

Supplementary Figures

Fig. S1 Curing behaviour of unirradiated a) TE-PLB-1193-ITX and b) TE-PLB-090 formulations examined by FTIR-ATR measurements conducted at a constant temperature of 70 °C.

Fig. S2 Curing behaviour of unirradiated a) TE-PLB-1193-ITX and b) TE-PLB-090 formulations examined by FTIR-ATR measurements conducted at room temperature.

Fig. S3a TGA curves of PLB-1193 and PLB-090 recorded under nitrogen atmosphere. a) Dynamic measurement using a heating rate of 20 °C/min. Isothermal measurements carried out b) below the decomposition temperatures of PLB-1193 and PLB-090 at 180 °C and 150 °C, respectively and c) above the decomposition temperature of PLB-1193 and PLB-090 at 250 °C.

Fig. S4 DSC data obtained under nitrogen atmosphere in two heating cycles for a) unexposed and b) UV-irradiated (424 J/cm² applied at 60 °C) TE-PLB-1193-ITX.

References

a) A. O. Konuray, X. Fernández-Francos and X. Ramis, *Polym. Chem.*, 2017, **8**, 5934–5947; b)
C. F. Carlborg, A. Vastesson, Y. Liu, W. van der Wijngaart, M. Johansson, T. Haraldsson, *J. Polym. Sci., Part A: Polym. Chem.*, 2014, **52**, 2604-2615.