Supporting Information

Indole-functionalized cross-linked chitosan for effective uptake of uranium(VI) from aqueous solution

Yan Wang^a, Yuyong Ai^a, Xiaolin Liu^a, Bowei Chen^{a*} and Yong Zhang^{b*}

^aSchool of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.

bState Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.

Corresponding author: Prof. Bowei Chen, Email: feishuitougao@163.com;

Prof. Yong Zhang, Email: yongpandm@swust.edu.cn

SEM images

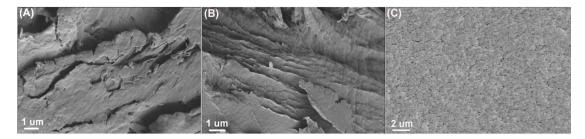


Figure S1 The SEM images of (A) CTS, (B) IAA-CTS and (C) IAA-CTSA.

Kinetic models

The equations of the pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich models are described as [1, 2]:

$$\ln\left(q_e - q_t\right) = \ln q_t - k_1 t \tag{S1}$$

$$\frac{t}{q_e} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
 (S2)

$$q_{t} = k_{ip}t^{1/2} + c$$

$$q_{t} = \frac{ln^{\frac{1}{100}}(\alpha\beta)}{\beta} + \frac{1}{\beta}lnt$$
(S3)

where q_t mg g^{-1} is the adsorption capacity at time t (min), k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) refer the pseudo-first-order and pseudo-second-order rate constant, respectively. k_{ip} (mg g^{-1} min^{-1/2}) is the constant of intraparticle diffusion kinetic model. In Elovich model β (g mg⁻¹) represents the Elovich constant related to the surface coverage extent and α (mg g^{-1} min⁻¹) is the initial rate of U(VI) adsorption.

Isotherms models

The forms of Langmuir model, Freundlich model and R_L are described as equation S5-S7 [3-5], respectively.

$$\frac{c_e}{q_e} = \frac{c_e}{q_m} + \frac{1}{q_m b} \tag{S5}$$

$$lnq_e = lnk_F + nlnc_e$$
 (S6)
$$R_L = \frac{1}{1 + bC_0}$$
 (S7)

Where b (L mg⁻¹) is the Langmuir constant. q_{max} is the maximum adsorption capacity. k_F (mg g^{-1}) refers the multilayer adsorption capacity and n denotes an empirical parameter connected with the intensity of adsorption, respectively.

References

- [S1] E. El Hayek, C. Torres, L. Rodriguez-Freire, J. M. Blake, C. L. De Vore, A. J. Brearley, M. N. Spilde, S. Cabaniss, A. S. Ali and J. M. Cerrato, *Environ. Sci. Technol.*, 2018, 52, 13089-13098.
- [S2] K. Z. Elwakeel, A. A. Atia and E. Guibal, Bioresour. Technol., 2014, 160, 107-114.
- [S3] Y. Cai, L. Chen, S. Yang, L. Xu, H. Qin, Z. Liu, L. Chen, X. Wang and S. Wang, ACS Sustain. Chem. Eng., 2019, 7, 5393-5403.
- [S4] T. Huang, Y. Shao, Q. Zhang, Y. Deng, Z. Liang, F. Guo, P. Li and Y. Wang, ACS Sustain.
 Chem. Eng., 2019, 7, 8775-8788.
- [S5] K. Y. Foo and B. H. Hameed, Chem. Eng. J., 2010, 156, 2-10.