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S1. Experimental section

Materials

The Ti3AlC2 powder was produced by Beijing Forsman Technology Co., Ltd. 49 % HF 

aqueous solution was produced by Sinopharm Chemical Reagent Co., Ltd. Urea, KNO3 

and Rhodamine B (RhB) were purchased from Sinopharm Chemical Reagent Co., Ltd 

(China). Formic acid aqueous solution was obtained from Tianjin Fuchen Chemical 

Reagent Factory. Nitrogen (N2, 99.99 %) was supplied by Qingdao Heli Gas Co., Ltd. All 

solvent used in this study was deionized (DI) water, which generated by the instrument 

of SW AC–520, Japan. All materials were used directly without further treatment.

Characterizations

The typical morphology and microstructure of the composites were observed by a 

scanning electron microscope (SEM, Hitachi S4800 and JSM-6510LV) and a 

transmission electronic microscopy (TEM, FET Tecnai G2 F20). X-ray diffraction (XRD) 

patterns were characterized by an X-ray diffractometer (D8 ADVANCE, Bruker). Fourier 

transform infrared spectroscopy (FTIR, Nicolet Nexus 670) were obtained to study the 

chemical structure of samples. X-ray photoelectron spectra (XPS, Escalab 250xi, Thermo 

Scientific) were obtained to reveal the situation of the surface chemical state and 

composition of photocatalysts. The information of Brunauer-Emmett-Teller (BET) 

specific surface areas (SBET) of the materials was obtained by nitrogen adsorption 

apparatus (ASAP2020, Micromeritics). The corresponding pore size distribution curves 

were characterized by the Barret-Joyner-Halender (BJH) method. The UV-vis diffused 
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reflectance spectra (DRS) of the samples were described by UV-vis spectrophotometer 

(UV2550, Shimadzu).

Transient photocurrent responses (TPR), electrochemical impedance spectroscopy (EIS), 

and Mott-Schottky (M-S) plots were characterized by electrochemical workstation 

(CHI760e Instruments). The prepared samples, Ag/AgCl electrode and platinum-wire 

electrode were taken as the working electrodes, reference electrode and counter electrode, 

respectively. In the process of electrochemical measurements, the slurry of photocatalysts 

were coated onto the indium tin oxide (ITO) conductive glasses to effect as the working 

electrodes. During the experiments of TPR, the 300 W Xenon lamp was used as the light 

source. The M-S plots were tested at the frequency varying from 1000 to 2000 Hz.
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Fig. S1. XRD patterns of Ti3AlC2 and Ti3C2.

Fig. S2. XPS survye spectra of rCN, T/TC and 0.5T/TC/CN samples.
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Fig. S3. Kinetic fit for the photocatalytic reduction of nitrate with different 

photocatalysts.

Fig. S4. The possible mechanisms for photocatalytic reduction of nitrate and charge 

transfer pathways over 0.5T/TC/CN: II-scheme heterojunction (a) and Z-scheme 

heterojunction (b).
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Table S1. Photocatalytic reduction of nitrate in previous literatures.

Selectivity (%)

Photocatalysts
[NO3

–-N]0 

/(mgN·L-1)
Hole scavenger

Conversion 

(%)

Irradiation 

time/(min) NO2
–-N NH4

+-N N2

Ref.

Mn2O3/g-C3N4 20 Magnetic field 94.5 120 - - 93.2 1

Pd/GdCrO3 8.4 Formic acid 98.7 100 0 0 100 2

AgCl/TNT 8.4 Formic acid 94.5 30 0.2 7.1 92.9 3

TiO2(P90) 100 Formic acid ＞88 - - - ＞94 4

Ag/TiO2(25) 100 Formic acid 71.7 30 11.5 0.167 83.7 5

TiO2(P25) 11.2 Formic acid 52.5 120 23 6 38.1 6

Pt-Cu/TiO2 14 Benzene 63.3 240 1 1 90 7
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Photocatalysts
[NO3

–-N]0 

/(mgN·L-1)
Hole scavenger

Conversion 

(%)

Irradiation 

time/(min)

Selectivity (%)

Ref.

NO2
–-N NH4

+-N N2

TiO2(P25) 3.5 Bio-electrons 60 1440 0 4 96 8

Cu/TiO2(P25) 10 Glycerol 98 120 0 2 98 9

Cu/TiO2 8.4 Formic acid 93.73 120 - - 0 10

Cu2O/TiO2(P25) 22.4 Oxalic acid 57.6 180 12.4 45.7 41.9 11

Pt/TiO2+SnPd/Al2O3 14 Glucose 23 720 3 22 75 12

Ag/TiO2(P25) 100 Formic acid 100 180 0 4 96 13

Ag/TiO2(P25) 100 Formic acid 99.6 240 2.3 9.3 88.4 14

Pd-Cu/TiO2(P25) 22.4 CO2+H2+Humic acid 100 240 0 <2 > 98 15

Pd-Cu/TiO2(P25) 11.2 H2+Formic acid 39-100 60 0 0-13.7 86.3- 16
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Photocatalysts
[NO3

–-N]0 

/(mgN·L-1)
Hole scavenger

Conversion 

(%)

Irradiation 

time/(min)

Selectivity (%)

Ref.

NO2
–-N NH4

+-N N2

100

Sn-Pd/Pt/TiO2(P25) 140 Ethanol 23 240 0 24 76 17
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Table S2. Texture properties of the prepared photocatalysts.

Table S3. Performance of photocatalytic nitrate reduction over different photocatalysts..

Photocatalysts
Conversion of 

NO3
–-N (%)

Yield of NO2
–

-N (mgN·L-1)

Yield of NH4
+-

N (mgN·L-1)

Selectivity of 

N2 (%)

rCN 46.23 4.04 2.91 84.99

T/TC 71.13 1.08 2.70 94.67

0.15T/TC/CN 69.00 2.46 2.70 92.30

0.25T/TC/CN 78.13 1.11 6.04 90.51

0.5T/TC/CN 93.03 0.56 3.21 96.62

0.75T/TC/CN 55.99 3.6 2.32 88.77

Photocatalysts SBET (m2·g-1) Vpore (cm3·g-1) Dpore (nm)

rCN 90.4175 0.486570 21.52549

T/TC 7.6879 0.034164 17.77535

0.5T/TC/CN 30.1255 0.166963 22.16890
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