Supporting Information

TiO₂/Ti₃C₂ intercalated with g-C₃N₄ nanosheets as 3D/2D ternary heterojunctions photocatalyst for enhanced photocatalytic reduction of nitrate with high N₂ selectivity in aqueous solution

Rui Zheng, Chunhu Li,* Kelei Huang, Ying Guan, Bo Sun, Wentai Wang, Liang Wang,

Junjie Bian

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering. Ocean University of China, Qingdao 266100, Shandong, China. E-mail: <u>lichunhu@ouc.edu.cn</u>; Telephone/Fax: +86-532-66781527.

S1. Experimental section

Materials

The Ti₃AlC₂ powder was produced by Beijing Forsman Technology Co., Ltd. 49 % HF aqueous solution was produced by Sinopharm Chemical Reagent Co., Ltd. Urea, KNO₃ and Rhodamine B (RhB) were purchased from Sinopharm Chemical Reagent Co., Ltd (China). Formic acid aqueous solution was obtained from Tianjin Fuchen Chemical Reagent Factory. Nitrogen (N₂, 99.99 %) was supplied by Qingdao Heli Gas Co., Ltd. All solvent used in this study was deionized (DI) water, which generated by the instrument of SW AC–520, Japan. All materials were used directly without further treatment.

Characterizations

The typical morphology and microstructure of the composites were observed by a scanning electron microscope (SEM, Hitachi S4800 and JSM-6510LV) and a transmission electronic microscopy (TEM, FET Tecnai G2 F20). X-ray diffraction (XRD) patterns were characterized by an X-ray diffractometer (D8 ADVANCE, Bruker). Fourier transform infrared spectroscopy (FTIR, Nicolet Nexus 670) were obtained to study the chemical structure of samples. X-ray photoelectron spectra (XPS, Escalab 250xi, Thermo Scientific) were obtained to reveal the situation of the surface chemical state and composition of photocatalysts. The information of Brunauer-Emmett-Teller (BET) specific surface areas (S_{BET}) of the materials was obtained by nitrogen adsorption apparatus (ASAP2020, Micromeritics). The corresponding pore size distribution curves were characterized by the Barret-Joyner-Halender (BJH) method. The UV-vis diffused

reflectance spectra (DRS) of the samples were described by UV-vis spectrophotometer (UV2550, Shimadzu).

Transient photocurrent responses (TPR), electrochemical impedance spectroscopy (EIS), and Mott-Schottky (M-S) plots were characterized by electrochemical workstation (CHI760e Instruments). The prepared samples, Ag/AgCl electrode and platinum-wire electrode were taken as the working electrodes, reference electrode and counter electrode, respectively. In the process of electrochemical measurements, the slurry of photocatalysts were coated onto the indium tin oxide (ITO) conductive glasses to effect as the working electrodes. During the experiments of TPR, the 300 W Xenon lamp was used as the light source. The M-S plots were tested at the frequency varying from 1000 to 2000 Hz.

Fig. S1. XRD patterns of Ti_3AlC_2 and Ti_3C_2 .

Fig. S2. XPS survye spectra of rCN, T/TC and 0.5T/TC/CN samples.

Fig. S3. Kinetic fit for the photocatalytic reduction of nitrate with different

photocatalysts.

Fig. S4. The possible mechanisms for photocatalytic reduction of nitrate and charge transfer pathways over 0.5T/TC/CN: II-scheme heterojunction (a) and Z-scheme

heterojunction (b).

Photocatalysts	[NO ₃ ⁻ -N] ₀	Hole scavenger	Conversion Irradiation		n Selectivity (%)			Dof
	$/(mg_N \cdot L^{-1})$		(%) t	time/(min)	NO ₂ N	NH4 ⁺ -N	N_2	Kel.
Mn ₂ O ₃ /g-C ₃ N ₄	20	Magnetic field	94.5	120	-	-	93.2	1
Pd/GdCrO ₃	8.4	Formic acid	98.7	100	0	0	100	2
AgCI/TNT	8.4	Formic acid	94.5	30	0.2	7.1	92.9	3
TiO ₂ (P90)	100	Formic acid	>88	-	-	-	>94	4
Ag/TiO ₂ (25)	100	Formic acid	71.7	30	11.5	0.167	83.7	5
TiO ₂ (P25)	11.2	Formic acid	52.5	120	23	6	38.1	6
Pt-Cu/TiO ₂	14	Benzene	63.3	240	1	1	90	7

Table S1. Photocatalytic reduction of nitrate in previous literatures.

Photocatalysts	[NO ₃ ⁻ -N] ₀	Web second and	Conversion	Irradiation	Selectivity (%)			Def
	/(mg _N ·L ⁻¹)	Hole scavenger	(%) time/(n	time/(min)	NO ₂ N	NH4 ⁺ -N	N ₂	Kei.
TiO ₂ (P25)	3.5	Bio-electrons	60	1440	0	4	96	8
Cu/TiO ₂ (P25)	10	Glycerol	98	120	0	2	98	9
Cu/TiO ₂	8.4	Formic acid	93.73	120	-	-	0	10
Cu ₂ O/TiO ₂ (P25)	22.4	Oxalic acid	57.6	180	12.4	45.7	41.9	11
Pt/TiO ₂ +SnPd/Al ₂ O ₃	14	Glucose	23	720	3	22	75	12
Ag/TiO ₂ (P25)	100	Formic acid	100	180	0	4	96	13
Ag/TiO ₂ (P25)	100	Formic acid	99.6	240	2.3	9.3	88.4	14
Pd-Cu/TiO ₂ (P25)	22.4	CO ₂ +H ₂ +Humic acid	100	240	0	<2	> 98	15
Pd-Cu/TiO ₂ (P25)	11.2	H ₂ +Formic acid	39-100	60	0	0-13.7	86.3-	16

Photocatalysts	[NO ₃ ⁻ -N] ₀	Conversion Irradiation		Selectivity (%)			D-f	
	$/(mg_{N} \cdot L^{-1})$	Hole scavenger	(%)	time/(min)	NO ₂ N	NH4 ⁺ -N	N_2	Kei.
							100	
Sn-Pd/Pt/TiO ₂ (P25)	140	Ethanol	23	240	0	24	76	17

Photocatalysts	$S_{BET} (m^2 \cdot g^{-1})$	V _{pore} (cm ³ ·g ⁻¹)	D _{pore} (nm)
rCN	90.4175	0.486570	21.52549
T/TC	7.6879	0.034164	17.77535
0.5T/TC/CN	30.1255	0.166963	22.16890

 Table S2. Texture properties of the prepared photocatalysts.

 Table S3. Performance of photocatalytic nitrate reduction over different photocatalysts..

Dhotoootolysts	Conversion of	Yield of NO ₂ ⁻	Yield of NH ₄ ⁺ -	Selectivity of
Thotocatarysts	NO ₃ ⁻ -N (%)	-N (mg _N ·L ⁻¹)	$N (mg_N \cdot L^{-1})$	N ₂ (%)
rCN	46.23	4.04	2.91	84.99
T/TC	71.13	1.08	2.70	94.67
0.15T/TC/CN	69.00	2.46	2.70	92.30
0.25T/TC/CN	78.13	1.11	6.04	90.51
0.5T/TC/CN	93.03	0.56	3.21	96.62
0.75T/TC/CN	55.99	3.6	2.32	88.77

Reference

- J. Zhao, N. Li, R. Yu, Z. Zhao and J. Nan, Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn₂O₃/g-C₃N₄ photocatalysis, *Chem. Eng. J.*, 2018, **349**, 530-538.
- Z. Hou, F. Chen, J. Wang, C. P. François-Xavier and T. Wintgens, Novel Pd/GdCrO₃ composite for photo-catalytic reduction of nitrate to N₂ with high selectivity and activity, *Appl. Catal. B-Environ.*, 2018, 232, 124-134.
- 3. Z. Geng, Z. Chen, Z. Li, X. Qi, X. Yang, W. Fan, Y. Guo, L. Zhang and M. Huo, Enhanced photocatalytic conversion and selectivity of nitrate reduction to nitrogen over AgCl/TiO₂ nanotubes, *Dalton T.*, 2018, 47, 11104-11112.
- 4. H. O. N. Tugaoen, P. Herckes, K. Hristovski and P. Westerhoff, Influence of ultraviolet wavelengths on kinetics and selectivity for N-gases during TiO₂ photocatalytic reduction of nitrate, *Appl. Catal. B-Environ.*, 2018, **220**, 597-606.
- F. Zhang, R. Jin, J. Chen, C. Shao, W. Gao, L. Li and N. Guan, High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO₂ catalyst with fine silver clusters, *J. Catal.*, 2005, 232, 424-431.
- G. Liu, S. You, M. Ma, H. Huang and N. Ren, Removal of nitrate by photocatalytic denitrification using nonlinear optical material, *Environ. Sci. Technol.*, 2016, 50, 11218-11225.

- 7. L. Li, Z. Xu, F. Liu, Y. Shao, J. Wang, H. Wan and S. Zheng, Photocatalytic nitrate reduction over Pt–Cu/TiO₂ catalysts with benzene as hole scavenger, *J. Photoch. Photobio. A*, 2010, **212**, 113-121.
- Z.-Q. Lin, S.-J. Yuan, W.-W. Li, J.-J. Chen, G.-P. Sheng and H.-Q. Yu, Denitrification in an integrated bioelectro-photocatalytic system, *Water Res.*, 2017, 109, 88-93.
- R. Lucchetti, L. Onotri, L. Clarizia, F. D. Natale, I. D. Somma, R. Andreozzi and R. Marotta, Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over "in situ" prepared zero-valent nano copper/P25, *Appl. Catal. B-Environ.*, 2017, 202, 539-549.
- D. d. B. Luiz, S. L. F. Andersen, C. Berger, H. J. José and R. d. F. P. M. Moreira, Photocatalytic reduction of nitrate ions in water over metal-modified TiO₂, *J. Photoch. Photobio. A*, 2012, **246**, 36-44.
- H. Adamu, A. J. McCue, R. S. F. Taylor, H. G. Manyar and J. A. Anderson, Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu₂O/TiO₂ and Cu₂O/TiO₂-AC composites, *Appl. Catal. B-Environ.*, 2017, **217**, 181-191.
- J. Hirayama and Y. Kamiya, Combining the photocatalyst Pt/TiO₂ and the nonphotocatalyst SnPd/Al₂O₃ for effective photocatalytic purification of groundwater polluted with nitrate, *ACS Catal.*, 2014, 4, 2207-2215.
- J. Sá, C. A. Agüera, S. Gross and J. A. Anderson, Photocatalytic nitrate reduction over metal modified TiO₂, *Appl. Catal. B-Environ.*, 2009, **85**, 192-200.

- H.-T. Ren, S.-Y. Jia, J.-J. Zou, S.-H. Wu and X. Han, A facile preparation of Ag₂O/P25 photocatalyst for selective reduction of nitrate, *Appl. Catal. B-Environ.*, 2015, **176-177**, 53-61.
- O. S. G. P. Soares, M. F. R. Pereira, J. J. M. Órfão, J. L. Faria and C. G. Silva, Photocatalytic nitrate reduction over Pd–Cu/TiO₂, *Chem. Eng. J.*, 2014, **251**, 123-130.
- N. Wehbe, M. Jaafar, C. Guillard, J.-M. Herrmann, S. Miachon, E. Puzenat and N. Guilhaume, Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water, *Appl. Catal. A-Gen.*, 2009, 368, 1-8.
- 17. J. Hirayama, H. Kondo, Y.-k. Miura, R. Abe and Y. Kamiya, Highly effective photocatalytic system comprising semiconductor photocatalyst and supported bimetallic non-photocatalyst for selective reduction of nitrate to nitrogen in water, *Catal. Commun.*, 2012, **20**, 99-102.