Supporting Information

Spatial charge separation and high-index facet dependence in polyhedral Cu₂O type-II surface heterojunctions for photocatalytic activity enhancement

Xin Zhang, Shaodong Sun,* Jie Cui, Man Yang,* Qiao Zhang, Peng Xiao, Jiandong Li, Qing Yang and Shuhua Liang*

Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China.

E-mail: sdsun@xaut.edu.cn (S. D. Sun), myang@xaut.edu.cn (M. Yang), liangsh@xaut.edu.cn (S. H. Liang).

Experimental Section

Computational details. Utilizing the projected augmented wave (PAW) method to study density functional calculations, executed in the Vienna *ab* initio simulation package (VASP) code.^[1] The exchange-correlation functional adopted the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE).^[2] In order to minimize the interaction between adjacent slabs, the periodic boundary condition with a vacuum space of 15 Å was used. The kinetic energy cutoff was programmed to be 400 eV. Monkhorst–Pack uncommon k-point meshes^[3] of $3 \times 3 \times 1$ and $1 \times 2 \times 1$ was recommended to {001} and {332} facets in the optimization process, while $7 \times 7 \times 1$ and $3 \times 7 \times 1$ were embraced by DOS calculations.

The surface free energy of Cu₂O {111} and {332} facets was calculated by ab initio thermodynamic approach, according to the surface linking with an oxygen atmosphere, which was described by an oxygen pressure, p, and temperature, T. Since surface system is modeled by symmetrical slabs with two equivalent surfaces, the surface free energy at given (T, p) can be expressed as:

$$\gamma_{surf}(T,p) = \frac{1}{2A} [G_{slab}(T,p,N_{Cu},N_{O}) - N_{Cu}\mu_{Cu}(T,p) - N_{O}\mu_{O}(T,p)]$$
(1)

Here, A is the area exposed to a unit cell, G_{slab} is the Gibbs free energy of the slab, μ_{Cu} and μ_{O} are the chemical potentials of copper and oxygen, while N_{Cu} and N_{O} are the number of Cu and O atoms. Thermodynamically the surface with the lowest $\gamma_{\text{surf}}(T,p)$ under certain conditions (T, p) corresponds to the most stable surface.

It has been proved in eq (1)^[4,5] that Gibbs free energies of solids can be expressed as a first approximation total energies. Thus $\gamma_{surf}(T, \mathbf{p})$ can be approximated by:

$$\gamma_{\text{surf}}(T,p) \approx \frac{1}{2A} \left[E_{slab} - \frac{N_{Cu}}{2} E_{Cu_2O}^{bulk} - \Delta N_O^{stoich} \mu_O(T,p) \right]$$
(2a)

where

$$\Delta N_O^{stoich} = \left(N_O - \frac{N_{Cu}}{2}\right) \text{ and }$$
(2b)

$$E_{Cu_2O}^{bulk} \approx 2\mu_{Cu}(T,p) + \mu_O(T,p).$$
 (2c)

The E_{slab} and $E_{Cu_2O}^{bulk}$ are total energies of the slab and of the formula unit of Cu₂O bulk, respectively. The ΔN_O^{stoich} is the number of excess O atoms.

Before establishing the function between oxygen chemical potential (μ_0) and $\gamma_{surf}(T, p)$, the oxygen poor limit (O_{lean}) and oxygen rich limit (O_{rich}) should be considered. The O_{lean} can be regarded as μ_0 corresponding to the decomposition of bulk Cu₂O into bulk Cu and O₂ gas, nevertheless at O_{rich} oxygen gas condenses on the surface. The O_{lean} and O_{rich} limits are determined by eqs (3a) and (3b), respectively.

$$\mu_{O}^{\min} = E_{Cu_{2}O}^{\text{bulk}} - E_{Cu}^{\text{bulk}} \text{ and } \mu_{Cu}^{\max} = E_{Cu}^{\text{bulk}}$$
(3a)

$$\mu_O^{\text{max}} = \frac{1}{2} E_{O_2} \text{ and } \mu_{Cu}^{\text{min}} = \frac{1}{2} \left[E_{Cu_2O}^{bulk} - \frac{1}{2} E_{O_2} \right]$$
(3b)

where E_{Cu}^{bulk} and E_{O_2} are total energies of Cu atom in the Cu-bulk and isolated O₂ molecule, respectively. Half the total energy of O₂ molecule is chosen as the zero reference for $\mu_O(p,T)$.

Fig. S1 N_2 adsorption/desorption isotherms for the 30-facet and 14-facet Cu_2O , respectively.

References

[1] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1998, **59**, 1758-1775.

[2] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.

[3] H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, *Phys. Rev. B*, 1976, **13**, 5188-5192.

[4] A. Kokalj and S. Peljhan, Density functional theory study of adsorption of benzotriazole on
 Cu₂O surfaces, *J. Phys. Chem. C*, 2015, **119**, 11625-11635.

[5] K. Reuter, and M. Scheffler, Composition, structure and stability of RuO₂ (110) as a function of oxygen pressure, *Phys. Rev. B*, 2001, 65, 035406.