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Fig. S1 SEM images of (a, b) commercial bulk Bi and (c, d) P-Bi. 
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Fig. S2 SEM-EDX images of P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10. 



4

Fig. S3 SEM images of (a, d) P-Cu-BiNF-0.5, (b, e) P-Cu-BiNF and (c, f) P-Cu-

BiNF-10. 
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Fig. S4 TEM-EDX images of P-Cu-BiNF.
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Fig. S5 SEM-Mapping images of P-Cu-BiNF-0.5.
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Fig. S6 (a) PXRD patterns. (b) XPS Cu 2p spectra of P-Cu-BiNF. (c) Raman spectra 

of P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 (the arrows represent Bi and Bi2O3 

phases, and the squares represent Cu2O and CuO phases).
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Fig. S7 (a) N2 sorption isotherm for bulk Bi. (b) N2 sorption isotherm for P-Bi and P-

Cu-BiNF. Pore size distributions and cumulative pore volumes (Vvumulative) of (c) P-Bi 

and (d) P-Cu-BiNF.
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Fig. S8 Potential-dependent i-t curves and FEs of H2, CO and formate for (a, d) bulk 

Bi, (b, e) P -Bi and (c, f) P-Cu-BiNF.
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Fig. S9 (a) LSV curves, (b) FEformate and (c) jformate for P-Cu-BiNF-0.5, P-Cu-BiNF 

and P-Cu-BiNF-10; Potential-dependent i-t curves and FEs of H2, CO and formate for 

(d, g) P-Cu-BiNF-0.5, (e, h) P-Cu-BiNF and (f, i) P-Cu-BiNF-10.
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Fig. S10 (a) LSV curves, (b) FEformate and (c) jformate for P- Bi, P-Cu and P-Cu-BiNF, 

(d) FEs of H2, CO and formate for P-Cu.
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Fig. S11 (a) PXRD pattern and (b) Bi 4f XPS spectrum of P-Cu-BiNF after CO2RR. 

(CP represents carbon paper). 
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Fig. S12 (a) SEM, (b-c) TEM and (d) HRTEM images of P-Cu-BiNF after CO2RR.
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Fig. S13 Tafel plots of P-Cu-BiNF, P-Bi and bulk Bi.
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Fig. S14 CV curves at different scan rates and Δj (= ja – jc) against scan rates for (a, d) 

bulk Bi, (b, e) P -Bi and (c, f) P-Cu-BiNF.
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Figure S15 (a) CV curves at the sweep rate of 5 mV s−1 in 0.1 M KCl (containing 5 

mM K3Fe(CN)6) over bulk Bi, P-Bi and P-Cu-BiNF. (b) The magnified of (a). (c) 

Chronoamperometric response recorded in 0.1 M KCl (containing 5 mM K3Fe(CN)6) 

after stepping the potential from 0.8 to 0.1 V vs. Ag/AgCl over bulk Bi, P-Bi and P-

Cu-BiNF. (d) Linearized plot based on the Cottrell equation for bulk Bi, P-Bi and P-

Cu-BiNF (The first 250 ms were omitted because of double layer charging effects).

The ECSAs of the catalysts were evaluated according to literature.1 The 

chronoamperometric response within 1 s was recorded after applying the potential 

from 0.8 to 0.1 V (vs. Ag/AgCl) in Ar-purged 0.1 M KCl (containing 5 mM 

K3Fe(CN)6). ECSA can be obtained by the following Cottrell equation：

𝑖=
𝑛𝐹𝐴𝐶 𝐷

Π𝑡

where i is the current, n = 1, D = 4.34 × 10−6 cm2 s−1, F = 96485 C mol−1, A is ECSA, 

and C is the concentration of K3Fe(CN)6 (5 mM ).
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ECSA can be obtained by plotting i versus t−1/2 and extracting the slope from the 

linear part. According to the results, the ECSAs of bulk Bi, P-Bi and P-Cu-BiNF were 

assessed to be 0.0044, 0.0048 and 0.032 cm2, respectively. And the ECSAs of P-Cu-

BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 with different Cu contents are 0.020, 0.032 

and 0.0065 cm2, respectively.
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Fig. S16 (a) Tafel plots, (b) electrochemical impedance plots and (c) capacitive Δj (= 

ja – jc) against scan rates for P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10.
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Fig. S17 CV curves at different scan rates and capacitive Δj (= ja – jc) against scan 

rates for (a, d) P-Cu-BiNF-0.5, (b, e) P-Cu-BiNF and (c, f) P-Cu-BiNF-10.
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Figure S18 (a) CV curves at the sweep rate of 5 mV s−1 in 0.1 M KCl (containing 5 

mM K3Fe(CN)6) over P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10. (b) 

Chronoamperometric response recorded in 0.1 M KCl (containing 5 mM K3Fe(CN)6) 

after stepping the potential from 0.8 to 0.1 V vs. Ag/AgCl at P-Cu-BiNF-0.5, P-Cu-

BiNF and P-Cu-BiNF-10. (c) The magnified of (a). (d) Linearized plot based on the 

Cottrell equation for P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 (The first 250 

ms were omitted because of double layer charging effects).
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Fig. S19 Formate partial current density normalized by ECSAs of bulk Bi, P-Bi and 

P-Cu-BiNF.
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Table S1 Performance comparison of P-Cu-BiNF with other recently reported Bi-

based electrocatalysts for the CO2-to-formate conversion.

Electrocatalysts Eletrolyte
Potential 

(V vs. RHE)
jformate

(mA cm-2)
FEformate

(%)
Ref.

-0.78 2.4 90.4

-0.83 6.8 93.3

-0.88 14.7 92.8

-0.98 36.0 92.9

P-Cu-BiNF 0.5 M KHCO3

-1.08 55.0 91.5

Commercial Bi 0.5 M KHCO3 -0.98 6.3 93.1

This work

Bismuth oxides 0.5 M KHCO3 -0.9 8 91 2

BOCNS 0.5 M KHCO3 -0.7 9.35 85 3

Bi nanodendrite 0.5 M KHCO3 -0.74 2.4 89 4

Bi nanosheets 0.5 M KHCO3 -1.74 vs. SCE 24 >90 5

Bi nanoflower 0.5 M KHCO3 -0.53 vs. SCE 7.5 99.2 6

Bi nanoparticle 0.5 M KHCO3 -0.78 ~3.3 91.3 7

Bismuth nanoflake 0.1 M KHCO3 -0.6 n.a.a 99 8

Bi NPs/Bi2O3

NSs with GBs
0.5 M KHCO3 -0.86 6.2 ~100 9

Bismuth dendrites 
on copper mesh

0.5 M KHCO3 -1.26 68.51 ~100 10

Bi2O3-CuO(x) 0.5 M KHCO3 -1.4 vs. SCE 9.1 89.3 11

SnO-Bi nanosheet 0.1 M KHCO3 -1.7 vs. Ag/AgCl 12 93 12

CuBi 0.5 M KHCO3 -1.5 ~60 ~90 13

Zn-Bi 
nanoparticles

0.5 M KHCO3 -0.8 n.a. 94 14

Cu-Bi 
microspheres

0.5 M KHCO3 -0.93 ~6 95 15

Nano-Bi on 
Copper foil

0.1 M KHCO3 -0.89 2.8 91.3 16

a n.a. means no available data.
Note: If the FEformate and jformate values are not specifically stated, they are derived from graphical 
results or calculated with the available information
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