Electronic Supplementary Information

Three-dimensional porous copper-decorated bismuth-based nanofoam for boosting electrochemical reduction of CO₂ to formate

Yingchun Zhang,^{a,b} Changsheng Cao,^{a,b,*} Xin-Tao Wu^{a,b,c} and Qi-Long Zhu^{a,b,c,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
^b University of Chinese Academy of Sciences, Beijing 100049, China
^c Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
*Corresponding Author E-mail: <u>cscao@fjirsm.ac.cn</u>, <u>qlzhu@fjirsm.ac.cn</u>

Fig. S1 SEM images of (a, b) commercial bulk Bi and (c, d) P-Bi.

Fig. S2 SEM-EDX images of P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10.

Fig. S3 SEM images of (a, d) P-Cu-BiNF-0.5, (b, e) P-Cu-BiNF and (c, f) P-Cu-BiNF-10.

Fig. S4 TEM-EDX images of P-Cu-BiNF.

Fig. S5 SEM-Mapping images of P-Cu-BiNF-0.5.

Fig. S6 (a) PXRD patterns. (b) XPS Cu 2p spectra of P-Cu-BiNF. (c) Raman spectra of P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 (the arrows represent Bi and Bi_2O_3 phases, and the squares represent Cu₂O and CuO phases).

Fig. S7 (a) N_2 sorption isotherm for bulk Bi. (b) N_2 sorption isotherm for P-Bi and P-Cu-BiNF. Pore size distributions and cumulative pore volumes ($V_{vumulative}$) of (c) P-Bi and (d) P-Cu-BiNF.

Fig. S8 Potential-dependent i-t curves and FEs of H₂, CO and formate for (a, d) bulk Bi, (b, e) P -Bi and (c, f) P-Cu-BiNF.

Fig. S9 (a) LSV curves, (b) $FE_{formate}$ and (c) $j_{formate}$ for P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10; Potential-dependent i-t curves and FEs of H₂, CO and formate for (d, g) P-Cu-BiNF-0.5, (e, h) P-Cu-BiNF and (f, i) P-Cu-BiNF-10.

Fig. S10 (a) LSV curves, (b) $FE_{formate}$ and (c) $j_{formate}$ for P- Bi, P-Cu and P-Cu-BiNF, (d) FEs of H₂, CO and formate for P-Cu.

Fig. S11 (a) PXRD pattern and (b) Bi 4f XPS spectrum of P-Cu-BiNF after CO₂RR. (CP represents carbon paper).

Fig. S12 (a) SEM, (b-c) TEM and (d) HRTEM images of P-Cu-BiNF after CO₂RR.

Fig. S13 Tafel plots of P-Cu-BiNF, P-Bi and bulk Bi.

Fig. S14 CV curves at different scan rates and $\Delta j (= j_a - j_c)$ against scan rates for (a, d) bulk Bi, (b, e) P -Bi and (c, f) P-Cu-BiNF.

Figure S15 (a) CV curves at the sweep rate of 5 mV s⁻¹ in 0.1 M KCl (containing 5 mM $K_3Fe(CN)_6$) over bulk Bi, P-Bi and P-Cu-BiNF. (b) The magnified of (a). (c) Chronoamperometric response recorded in 0.1 M KCl (containing 5 mM $K_3Fe(CN)_6$) after stepping the potential from 0.8 to 0.1 V vs. Ag/AgCl over bulk Bi, P-Bi and P-Cu-BiNF. (d) Linearized plot based on the Cottrell equation for bulk Bi, P-Bi and P-Cu-BiNF (The first 250 ms were omitted because of double layer charging effects).

The ECSAs of the catalysts were evaluated according to literature.¹ The chronoamperometric response within 1 s was recorded after applying the potential from 0.8 to 0.1 V (*vs.* Ag/AgCl) in Ar-purged 0.1 M KCl (containing 5 mM $K_3Fe(CN)_6$). ECSA can be obtained by the following Cottrell equation:

$$i = \frac{nFAC\sqrt{D}}{\sqrt{\Pi t}}$$

where *i* is the current, n = 1, $D = 4.34 \times 10^{-6}$ cm² s⁻¹, F = 96485 C mol⁻¹, A is ECSA, and C is the concentration of K₃Fe(CN)₆ (5 mM).

ECSA can be obtained by plotting *i* versus $t^{-1/2}$ and extracting the slope from the linear part. According to the results, the ECSAs of bulk Bi, P-Bi and P-Cu-BiNF were assessed to be 0.0044, 0.0048 and 0.032 cm², respectively. And the ECSAs of P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 with different Cu contents are 0.020, 0.032 and 0.0065 cm², respectively.

Fig. S16 (a) Tafel plots, (b) electrochemical impedance plots and (c) capacitive Δj (= $j_a - j_c$) against scan rates for P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10.

Fig. S17 CV curves at different scan rates and capacitive $\Delta j \ (= j_a - j_c)$ against scan rates for (a, d) P-Cu-BiNF-0.5, (b, e) P-Cu-BiNF and (c, f) P-Cu-BiNF-10.

Figure S18 (a) CV curves at the sweep rate of 5 mV s⁻¹ in 0.1 M KCl (containing 5 mM K₃Fe(CN)₆) over P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10. (b) Chronoamperometric response recorded in 0.1 M KCl (containing 5 mM K₃Fe(CN)₆) after stepping the potential from 0.8 to 0.1 V *vs.* Ag/AgCl at P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10. (c) The magnified of (a). (d) Linearized plot based on the Cottrell equation for P-Cu-BiNF-0.5, P-Cu-BiNF and P-Cu-BiNF-10 (The first 250 ms were omitted because of double layer charging effects).

Fig. S19 Formate partial current density normalized by ECSAs of bulk Bi, P-Bi and P-Cu-BiNF.

Electrocatalysts	Eletrolyte	Potential (V vs. RHE)	j _{formate} (mA cm ⁻²)	FE _{formate} (%)	Ref.
		-0.78	2.4	90.4	
P-Cu-BiNF	0.5 М КНСО ₃	-0.83	6.8	93.3	This work
		-0.88	14.7	92.8	
		-0.98	36.0	92.9	
		-1.08	55.0	91.5	
Commercial Bi	0.5 M KHCO ₃	-0.98	6.3	93.1	
Bismuth oxides	0.5 M KHCO ₃	-0.9	8	91	2
BOCNS	0.5 M KHCO ₃	-0.7	9.35	85	3
Bi nanodendrite	0.5 M KHCO ₃	-0.74	2.4	89	4
Bi nanosheets	0.5 M KHCO ₃	-1.74 vs. SCE	24	>90	5
Bi nanoflower	0.5 M KHCO ₃	-0.53 vs. SCE	7.5	99.2	6
Bi nanoparticle	0.5 M KHCO ₃	-0.78	~3.3	91.3	7
Bismuth nanoflake	0.1 M KHCO ₃	-0.6	n.a. ^a	99	8
Bi NPs/Bi ₂ O ₃ NSs with GBs	0.5 M KHCO ₃	-0.86	6.2	~100	9
Bismuth dendrites on copper mesh	0.5 M KHCO ₃	-1.26	68.51	~100	10
Bi_2O_3 - $CuO_{(x)}$	0.5 M KHCO ₃	-1.4 <i>vs.</i> SCE	9.1	89.3	11
SnO-Bi nanosheet	0.1 M KHCO ₃	-1.7 vs. Ag/AgCl	12	93	12
CuBi	0.5 M KHCO ₃	-1.5	~60	~90	13
Zn-Bi nanoparticles	0.5 M KHCO ₃	-0.8	n.a.	94	14
Cu-Bi microspheres	0.5 M KHCO ₃	-0.93	~6	95	15
Nano-Bi on Copper foil	0.1 M KHCO ₃	-0.89	2.8	91.3	16

Table S1 Performance comparison of P-Cu-BiNF with other recently reported Bibased electrocatalysts for the CO₂-to-formate conversion.

^a n.a. means no available data.

Note: If the $FE_{formate}$ and $j_{formate}$ values are not specifically stated, they are derived from graphical results or calculated with the available information

References

- H. Liang, S. Zhao, X. Hu, M. Ceccato, T. Skrydstrup, K. Daasbjery, Hydrophobic Copper Interfaces Boost Electroreduction of Carbon Dioxide to Ethylene in Water, ACS Catal., 2021, 11, 958-966.
- P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen, F. Yang, L. Zhou, K. Qi, H. Liu and B. Y. Xia, Bismuth Oxides with Enhanced Bismuth–Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate, ACS Catal., 2020, 10, 743-750.
- Y. Zhang, X. Zhang, Y. Ling, F. Li, A. M. Bond and J. Zhang, Controllable Synthesis of Few-Layer Bismuth Subcarbonate by Electrochemical Exfoliation for Enhanced CO₂ Reduction Performance, *Angew. Chem. Int. Ed.*, 2018, 57, 13283-13287.
- J. H. Koh, D. H. Won, T. Eom, N.-K. Kim, K. D. Jung, H. Kim, Y. J. Hwang and B. K. Min, Facile CO₂ Electro-Reduction to Formate via Oxygen Bidentate Intermediate Stabilized by High-Index Planes of Bi Dendrite Catalyst, ACS Catal., 2017, 7, 5071-5077.
- N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li and Y. Li, Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO₂ reduction to formate, *Nat. Commun.*, 2018, 9, 1320.
- Y. Qiu, J. Du, C. Dai, W. Dong and C. Tao, Bismuth Nano-Flowers as a Highly Selective Catalyst for Electrochemical Reduction of CO₂ to Formate, *J. Electrochem. Soc.*, 2018, 165, H594-H600.
- X. Zhang, X. Hou, Q. Zhang, Y. Cai, Y. Liu and J. Qiao, Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO₂ electroreduction to formate, *J. Catal.*, 2018, 365, 63-70.
- S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang and J.-L. Lee, Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate, *Nano Energy*, 2017, 39, 44-52.
- 9. L. Li, D.-K. Ma, F. Qi, W. Chen and S. Huang, Bi nanoparticles/Bi₂O₃

nanosheets with abundant grain boundaries for efficient electrocatalytic CO₂ reduction, *Electrochim. Acta*, 2019, **298**, 580-586.

- C. Zhu, Q. Wang and C. Wu, Rapid and scalable synthesis of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO₂ to formate, *J. CO₂ Util.*, 2020, **36**, 96-104.
- C. Dai, Y. Qiu, Y. He, Q. Zhang, R. Liu, J. Du and C. Tao, Controlled synthesis of a Bi₂O₃-CuO catalyst for selective electrochemical reduction of CO₂ to formate, *New J. Chem.*, 2019, 43, 3493-3499.
- X. An, S. Li, A. Yoshida, T. Yu, Z. Wang, X. Hao, A. Abudula and G. Guan, Bi-Doped SnO Nanosheets Supported on Cu Foam for Electrochemical Reduction of CO₂ to HCOOH, *ACS Appl. Mater. Inter.*, 2019, **11**, 42114-42122.
- M. Y. Zu, L. Zhang, C. Wang, L. R. Zheng and H. G. Yang, Coppermodulated bismuth nanocrystals alter the formate formation pathway to achieve highly selective CO₂ electroreduction, *J. Mater. Chem. A*, 2018, 6, 16804-16809.
- T. Zhang, Y. Qiu, P. Yao, X. Li and H. Zhang, Bi-Modified Zn Catalyst for Efficient CO₂ Electrochemical Reduction to Formate, *ACS Sustain. Chem. Eng.*, 2019, 7, 15190-15196.
- L. Jia, H. Yang, J. Deng, J. Chen, Y. Zhou, P. Ding, L. Li, N. Han and Y. Li, Copper-Bismuth Bimetallic Microspheres for Selective Electrocatalytic Reduction of CO₂ to Formate, *Chinese J. Chem.*, 2019, **37**, 497-500.
- W. Lv, J. Zhou, J. Bei, R. Zhang, L. Wang, Q. Xu and W. Wang, Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO₂ to formate, *Appl. Surf. Sci.*, 2017, **393**, 191-196.