Supplementary Information

Generation of multi-dimensional defect structures for synergetic engineering of hole and phonon transports: enhanced thermoelectric performance in Sb and Cu co-doped GeTe

Hyunho Kim, Chul Oh Park, Hyerin Jeong, Samuel Kimani Kihoi, Seonghoon Yi, Hyun-Sik Kim, Kyu Hyoung Lee, and Ho Seong Lee

Table S1. Composition, lattice constant, carrier concentration, and DOS effective mass of Ge_{1-x} , $_ySb_xCu_yTe$ samples obtained from Hall measurement performed at room temperature.

Nominal	Lattice constant		Carrier concentration	DOS effective mass, m_d^*
composition	a (nm)	<i>c</i> (nm)	$(10^{20} \text{ cm}^{-3})$	(m_0)
GeTe	0.8316	1.0648	5.69	1.21
Ge _{0.9} Cu _{0.1} Te	0.8339	1.0673	6.91	1.18
Ge _{0.9} Sb _{0.1} Te	0.8411	1.0491	0.98	1.58
Ge _{0.85} Sb _{0.1} Cu _{0.05} Te	0.8487	1.0331	1.92	1.54
$Ge_{0.8}Sb_{0.1}Cu_{0.1}Te$	0.8491	1.0324	1.19	1.55

Table S2. Density of Ge_{1-x-y}Sb_xCu_yTe samples estimated by applying Archimedes' principle.

Nominal composition	Density (g cm ⁻³)	
GeTe	6.120	
Ge _{0.9} Cu _{0.1} Te	6.118	
Ge _{0.9} Sb _{0.1} Te	6.117	
$Ge_{0.85}Sb_{0.1}Cu_{0.05}Te$	6.117	
$Ge_{0.8}Sb_{0.1}Cu_{0.1}Te$	5.984	

S1. Calculation of density-of-states effective mass

We calculated the density-of-states (DOS) effective mass (m_d^*) of $\text{Ge}_{1-x-y}\text{Sb}_x\text{Cu}_y\text{Te}$ samples by using measured Seebeck coefficient (*S*) and carrier concentration (*n*) at room temperature based on the following Eq. (S1) [1]:

$$S = \frac{2k_B^2 T}{3eh^2} \left(\frac{\pi}{3n}\right)^{3/2} m_d^*$$
(S1)

where $k_{\rm B}$, e, and h are the Boltzmann constant, elementary charge, and Planck constant, respectively.

S2. Calculation of Lorentz number L

Under the assumption of the single parabolic band model with acoustic phonon scattering, the Lorenz number (L) can be estimated by using the following Eq. (S2) [2].

$$L = 1.5 + exp\left(-\frac{|S|}{116}\right)$$
(S2)

Figure S1. Temperature dependence of the Lorenz numbers of $Ge_{1-x-y}Sb_xCu_yTe$ samples.

References

- [1] G.J. Snyder, E.S. Toberer, Nat. Mater. 7 (2008) 105-114.
- [2] H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3 (2015) 041506.