Supporting information

for

An albumin-binding Gd-HPDO3A contrast agent for improved intravascular retention

Louise R. Tear, ^a Carla Carrera, ^b Chetan B. Dhakan , ^{b,c} Eleonora Cavallari,^a Fabio Travagin,^e Claudia Calcagno,^d Silvio Aime, ^{a,b} Eliana Gianolio ^{a,b}

Content:

I. Relaxometric titration of HSA with Gd-HPDO3A-DCA (Figure S1)		
	pag. 2	
II. Transmetallation experiment (Figure S2)	pag. 2	
III. In vivo MR-Images of TSA tumor bearing mice (Figures S3 and S4)	pag. 3	
IV. Quantification of gadolinium and albumin in plasma and in the aortic arch of the mouse models (Figure S5)	hree species o pag. 4	f
V. NMR spectra, HRMS and Chromatograms of compounds A,C,D,E, Gd-HPDO3A-E HPDO3A-DCA (Figures S6-S18)	CA and Eu- pag. 5-13	
VI. Proton relaxation enhancement fitting equations	pag. 14	

Figure S1: Proton relaxation rate (R_{1obs}) of 0.15 mM HSA in 50 mM PBS as a function of increasing Gd-HPDO3A-DCA concentration. Measured at 0.47 T, pH 7.4 at 298K and 310 K.

Figure S2: Transmetalation of Gd complexes with 1 eq. Zinc in 67 mM phosphate buffer at 310 K and pH 7.4, measured at 0.47 T.

2

Figure S3: Representative T1-weighted MSME for healthy tissues: kidneys and liver (partially observable) obtained pre and after injection with A) Gd-HPDO3A and B) Gd-HPDO3A-DCA, images show left to right pre-contrast, and post-contrast at 5 and 50 min.

Figure S4: Representative T1-weighted MSME for healthy tissues: tumours (red lines) and liver obtained pre and after injection with A) Gd-HPDO3A and B) Gd-HPDO3A-DCA, images show left to right pre-contrast, and post-contrast at 5 and 50 min.

Figure S5: A) Quantification of gadolinium concentration by ICP-MS in plasma and in the aortic arch of three species of mouse models. B) Western Blot (n=2 per group) and C) percentage of albumin deposition in the vessel wall in the three species of mouse models.

*P<0.05; **P<0.01; ***P<0.001

NMR spectra, HRMS and Chromatograms of compounds A,C,D,E, Gd-HPDO3A-DCA and Eu-HPDO3A-DCA

Figure S6: ¹H NMR spectrum of compound **A** in CD₃OD at 400 MHz and 298 K.

Figure S7: ¹³C APT NMR spectrum of compound A in CD₃OD at 400 MHz and 298 K.

Figure S8: HRMS spectrum of compound A.

Figure S9: ¹H NMR spectrum of compound C in CD₃OD at 400 MHz and 298 K.

Figure S10: ¹³C APT NMR spectrum of compound C in CD_3OD at 400 MHz and 298 K.

Figure S11: HRMS spectrum of compound C.

Figure S12: HRMS spectrum of compound D and D'.

a)

Figure S13: a) Chromatogram Diode Array (200-400 nm) and TIC ESI+, purity >90% and b) Mass spectrum in ESI+ of peak at 9.4 min of compound **E**.

Figure S14: ¹H-NMR spectrum of compound E in DMSO d₆ at 600 MHz and 298 K.

Figure S15: ¹³C-NMR spectrum of compound E in DMSO d₆ at 600 MHz and 298 K.

Figure S16: HRMS spectrum of compound E.

Figure S17: a) Chromatogram Diode Array (200-400 nm) and TIC ESI+and b) Mass spectrum in ESI+ of peak at 9.72 min of **Gd-HPDO3A-DCA**.

b)

Figure S18: a) Chromatogram Diode Array (200-400 nm) and TIC ESI+ and b) Mass spectrum in ESI+ of peak at 9.68 min of **Eu-HPDO3A-DCA**.

Proton relaxation enhancement fitting equations

HSA binding parameters were determined using the proton relaxation enhancement method. The water proton relaxation rate (R_1^{obs}) of Gd-HPDO3A-DCA (0.1 mM) was measured as a function of increasing HSA concentration (0-1mM) in 50 mM PBS at 298 K and 310 K, 21.5 MHz, pH 7.4. R_1^{obs} was defined as the following:

$$R_{1obs} = r_{1A}[Gd - L] + r_{1B}[Gd - L - HSA] + R_{1d}$$
(1)

The diamagnetic contribution (R_{1d}) was determined as a function of increasing HSA concentration and subtracted from the observed relaxation rate to give the paramagnetic relaxation rate (R_{1P}). The data were then fitted to the following equilibrium, with the association constant defined as follows:

$$Gd - L + HSA \leftrightarrow Gd - L - HSA \tag{2}$$

$$K_a = [Gd - L - HSA]/[Gd - L][nHSA]$$
(3)

where *n* is the number of independent binding sites and K_a the apparent binding constant. A second titration was carried out to estimate *n*, where the concentration of HSA was constant (0.2 mM) and the concentration of the Gd complex was increased from 0 – 1 mM.

For competitive binding experiments, a solution of equimolar Gd complex and HSA in 50 mM PBS was prepared. Increasing concentrations of the drug were added up to 40-50 times excess, maintaining a constant Gd and HSA concentration. For ibuprofen and warfarin, 0.2 mM Gd and HSA were used, with a maximum drug concentration of 10 mM. Due to the low aqueous solubility of mitoxantrone, a maximum drug concentration of 4 mM was used with 0.1 mM Gd and HSA. Proton relaxation measurements on the solutions were performed at 21.5 MHz and 310 K.