Slow magnetic relaxation in dinuclear dysprosium and holmium phenoxide bridged complexes: a Dy₂ single molecule magnet with a high energy barrier.

Matilde Fondo, *^a Julio Corredoira-Vázquez,^a Ana M. García-Deibe,^a Jesús Sanmartín-Matalobos,^a Silvia Gómez-Coca,^b Eliseo Ruiz^b, Enrique Colacio^c

^a Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.

^b Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i

Computacional, Universitat de Barcelona, 08028 Barcelona, Spain

^c Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain

Figure S1. Ellipsoid (50% probability) diagram for Dy2 (from Dy2·2THF)	page S3
Figure S2. Ellipsoid (50% probability) diagram for Ho2.	page S3
Figure S3. $\chi_M T$ vs T for Ho ₂ . Inset: <i>M</i> /Nµ _B vs H.	page S4

Figure S4. Frequency dependence of χ'_{M} for **Dy**₂ in a zero dc field at different temperatures.

page S4

Figure S5. Cole-Cole plot for Dy ₂ at zero dc field.	page S5

Figure S6. Arrhenius plot for Dy_2 in a zero dc field showing the Raman, Orbach and combinationof Raman-Orbach fits.page S5

Figure S7. Temperature dependence of χ''_{M} for Dy₂ in a zero dc field at different frequencies. page S5

Figure S8. Field-cooled (FC) and zero-field-cooled (ZFC) magnetization for **Dy**₂, measured under a 1000 Oe dc field in warm mode (2 K/min). page S6

Figure S9. Frequency dependence of χ''_{M} for **Ho**₂·4H₂O at 2.5 K under different magnetic fields.

Figure S10. Employed geometry for the Dy_2 molecules including the Py moleculepage S6Figure S11. Isosurface of the CASSCF beta electron density of one of the Dy^{III} ions of Dy_2 calculated as the difference between the total density and the spin density of the seven alphaactive electrons. It is shown for the ground (above), first excited (middle) and second excitedpage S7

Table S1. Main bond distances (Å) and angles (°) for $Dy_2 \cdot 2Py$ and $Ho_2 \cdot 2Py$ page S8**Table S2.** SHAPE v2.1. Continuous shape measures calculation (c) 2013 Electronic Structure

Group, Universitat de Barcelona page S9

Table S3. Generalised Debye model fitting parameters for Dy_2 page S10

Table S4. Calculated energies (in cm⁻¹) of the states before the inclusion of the spin-orbit effectpage S10

Table S5. Calculated energies (in cm $^{-1}$) of the 8 lowest Kramers doublets after the RASSI step forthe Dy2 compounds.page S11

Table S6. Calculated energies (in cm^{-1}) of the 17 lowest states after the RASSI step for the Ho2compound.page S11

Table S7. Crystal data and structure refinement for $[Dy(H_3L^{1,2,4})]_2 \cdot 2THF$ (**Dy**₂·2THF), $[Dy(H_3L^{1,2,4})]_2 \cdot 2Py$ (**Dy**₂·2Py) and $[Ho(H_3L^{1,2,4})]_2 \cdot 2Py$ (**Ho**₂·2Py)page S12

Figure S1. Ellipsoid (50% probability) diagram for Dy₂ (from Dy₂·2THF)

Figure S2. Ellipsoid (50% probability) diagram for Ho₂.

Figure S3. $\chi_M T$ vs T for Ho₂. Inset: $M/N\mu_B$ vs H. The solid red lines represent the theoretical data obtained from *ab inito* calculations including the dipolar interactions

Figure S4. Frequency dependence of χ'_{M} for \textbf{Dy}_2 in a zero dc field at different temperatures.

Figure S5. Cole-Cole plot for Dy₂ at zero dc field.

Figure S6. Arrhenius plot for Dy_2 in a zero dc field showing the Raman, Orbach and combination of Raman-Orbach fits.

Figure S7. Temperature dependence of χ''_{M} for Dy₂ in a zero dc field at different frequencies.

Figure S8. Field-cooled (FC) and zero-field-cooled (ZFC) magnetization for **Dy**₂, measured under a 1000 Oe dc field in warm mode (2 K/min).

Figure S9. Frequency dependence of χ''_{M} for Ho₂·4H₂O at 2.5 K under different magnetic fields.

Figure S10. Employed geometry for the Dy_2 molecules including the Py molecule.

Figure S11. Isosurface of the CASSCF beta electron density of one of the Dy^{III} ions of Dy_2 calculated as the difference between the total density and the spin density of the seven alpha active electrons. It is shown for the ground (above), first excited (middle) and second excited (below) states.

	Dy₂·2THF	Dy ₂ ·2Py	Ho₂ ·2Py
M1-013	2.261(7)	2.261(10)	2.241(8)
M1-012	2.264(7)	2.254(9)	2.271(7)
M1-011	2.319(7)	2.340(8)	2.318(7)
M1-011 ^{#1}	2.481(7)	2.512(10)	2.487(7)
M1-N12	2.590(10)	2.591(10)	2.561(9)
M1-N11	2.503(9)	2.522(10)	2.511(8)
M1-N13	2.586(9)	2.579(10)	2.567(9)
M1-N14	2.560(8)	2.529(9)	2.520(8)
M1…M1#1	3.9219(12)	3.945(7)	3.9332(12)
M1-011-M1 ^{#1}	109.5(3)	108.7(3)	109.9(3)
012-M1-N14	149.2(3)	149.6(3)	149.5(3)
013-M1-N11	66.5(3)	66.3(3)	66.2(3)

 Table S1. Main bond distances (Å) and angles ($^{\circ}$) for $Dy_2 \cdot 2THF$, $Dy_2 \cdot 2Py$ and $Ho_2 \cdot 2Py$

^{#1} -x+1,-y+1,-z

Table S2. SHAPE v2.1. Continuous shape measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona.

Geometries Coordination number 8

ETBPY-8		13 D3h	Elo	ongated trig	gonal bipyr	ramid		
TT-8		12 Td	Tri	akis tetrah	edron			
JSD-8		11 D2d	Sn	ub diphen	oid J84			
BTPR-8		10 C2v	Bia	augmented	trigonal p	rism		
JBTPR-8		9 C2v	Bia	ugmented	trigonal pr	ism J50		
JETBPY-8		8 D3h	Joh	nson elon	gated trian	igular bipy	ramid J14	
JGBF-8		7 D2d	Joh	nson gyrob	oifastigium	J26		
TDD-8		6 D2d	Tria	angular do	decahedro	n		
SAPR-8		5 D4d	Squ	are antipri	sm			
CU-8		4 Oh	Cub	e				
HBPY-8		3 D6h	Hex	agonal bip	yramid			
HPY-8		2 C7v	Нер	tagonal py	ramid			
OP-8		1 D8h	Oct	agon				
[Dy(H ₃ L ^{1,2,4})] ₂ ·2TH	F (Dy₂ ·2⊺	ΓHF)					
Structure [ML8]	ETBPY	-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8
•	-	22.93	2,	10.574,	2.469,	1.849,	2.092,	27.040
JGBF-8	TDD-8	SAPI	R-8	CU-8	HBPY-8	HPY-8	OP-8	
11.890,	1.073,	1.71	1,	10.216,	16.903,	23.858,	27.986	
[Dy(H ₃ L ^{1,2,4})]₂·2Py	(Dy₂ ·2Py	')					
Structure [ML8]	ETBPY	-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8
•	-	23.14	9,	10.665,	2.554,	1.844,	2.126,	26.641
JGBF-8	TDD-8	SAPI	R-8	CU-8	HBPY-8	HPY-8	OP-8	
12.006,	1.178,	1.52	0,	10.328,	16.912,	23.734,	27.954	
[Ho(H ₃ L ^{1,2,4}	¹)]₂·2Py	(Ho₂ ·2P)	()					
Structure [ML8]	ETBPY	-8	TT-8	JSD-8	BTPR-8	JBTPR-8	JETBPY-8
		22.97	'9,	10.694,	2.655,	1.813,	2.072,	26.651,
JGBF-8	TDD-8	SAPI	R-8	CU-8	HBPY-8	HPY-8	OP-8	
12.113,	1.230,	1.47	8,	10.316,	16.970,	23.459,	27.656	

<i>Т/</i> К	χ _S /(cm³mol⁻¹)	χ _T /(cm³mol⁻¹)	τ/(10 ⁻⁴ s)	α
14.0	0.30	1.91	128.0	0.19
14.5	0.30	1.79	104.7	0.17
15.0	0.29	1.69	86.7	0.16
15.5	0.28	1.62	72.9	0.15
16.0	0.28	1.54	61.7	0.13
16.5	0.27	1.49	52.4	0.13
17.0	0.26	1.44	44.8	0.12
17.5	0.26	1.39	38.1	0.11
18.0	0.25	1.35	32.8	0.11
18.5	0.25	1.31	28.0	0.11
19.0	0.24	1.28	23.9	0.11
19.5	0.24	1.24	20.4	0.11
20.0	0.23	1.21	17.4	0.11
20.5	0.22	1.19	14.7	0.12
21.0	0.23	1.16	12.5	0.11
21.5	0.22	1.13	10.5	0.12
22.0	0.21	1.11	8.8	0.13
22.5	0.21	1.09	7.3	0.14
23.0	0.21	1.06	6.1	0.14
23.5	0.21	1.04	5.0	0.14
24	0.21	1.02	4.2	0.15
24.5	0.22	1.00	3.3	0.16
25.0	0.23	0.98	2.8	0.15
25.5	0.23	0.96	2.3	0.16
26.0	0.25	0.95	1.9	0.16

Table S3. Generalised Debye model fitting parameters for $\ensuremath{\text{Dy}_2}$

Table S4. Calculated energies (in cm⁻¹) of the states before the inclusion of the spin-orbit effect.

State	Ho ₂	Dy ₂	Dy ₂ ·Py1	Dy ₂ ·Py2
1	0	0	0	0
2	47.6	5.1	4.6	4.7
3	102.0	308.1	305.3	306.1
4	159.8	365.9	352.1	354.5
5	209.9	416.5	412.2	412.6
6	251.8	460.3	452.1	454.8
7	267.2	520.7	510.9	513.8
8	327.6	569.4	577.3	577.5

KDs	Dy ₂	Dy ₂ ·Py1	Dy ₂ ·Py2
1	0	0	0
2	231.6	230.9	231.8
3	341.9	334.6	335.9
4	405.7	395.3	396.4
5	470.1	459.7	461.2
6	517.2	507.7	510.4
7	578.4	577.6	578.0
8	750.6	751.7	751.4

Table S5. Calculated energies (in cm⁻¹) of the 8 lowest Kramers doublets after the RASSI step for the Dy_2 compounds.

Table S6. Calculated energies (in cm⁻¹) of the 17 lowest states after the RASSI step for the Ho_2 compound.

State	Ho ₂
1	0
2	1.71
3	61.7
4	68.4
5	122.8
6	151.1
7	186.3
8	194.3
9	204.3
10	221.4
11	249.8
12	252.9
13	302.9
14	308.7
15	333.2
16	394.3
17	396.8

	Dy₂·2THF	Dy ₂ •2Py	Ho ₂ •2Py
Empirical formula	C ₆₄ H ₈₂ Dy ₂ N ₈ O ₈	$C_{64}H_{76}Dy_2N_{10}O_6$	$C_{64}H_{76}Ho_2N_{10}O_6$
Molecular weight	1392.35	1406.34	1411.20
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P2 ₁ /n	P-1	P-1
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal size (mm ³)	0.070 x 0.060 x 0.020	0.740 x 0.260 x 0.080	0.070 x 0.050 x 0.020
Color, shape	Prism, colorless	Needle, colorless	Prism, colorless
Т (К)	100(2)	100(2)	100(2)
a (Å)	13.480(4)	9.902(18)	9.8904(11)
b (Å)	14.259(4)	12.75(3)	12.7769(15)
c (Å)	15.403(4)	13.67(3)	13.6362(17)
α (º)	90	64.03(5)	64.096(3)
β (º)	106.770(9)	76.98(4)	76.914(4)
γ (º)	90	67.75(4)	67.662(3)
Volume (ų)	2834.7(13)	1432(5)	1430.0(3)
Z	2	2	1
Absorpt. coef. (mm ⁻¹)	2.680	2.651	2.809
Reflections collected	51827	18178	31962
Independent reflections	5801 [R(int) = 0.1259]	5235 [R(int) = 0.1695]	5220 [R(int) = 0.1253]
Data / restraints / param.	5801 / 6 / 361	5235 / 0 / 370	5220 / 12 / 370
Final R indices $[I > 2\sigma(I)]$	R ₁ = 0.0885	R ₁ = 0.0711	$R_1 = 0.0719$
	$wR_2 = 0.2050$	wR ₂ = 0.1486	wR ₂ = 0.1488
R indices (all data)	R ₁ = 0.1077	R ₁ = 0.1307	R ₁ = 0.1017
	$wR_2 = 0.2150$	wR ₂ = 0.1749	wR ₂ = 0.1638

Table S7. Crystal data and structure refinement for $[Dy(H_3L^{1,2,4})]_2 \cdot 2THF$ (**Dy**₂ · 2THF), $[Dy(H_3L^{1,2,4})]_2 \cdot 2Py$ (**Dy**₂ · 2Py) and $[Ho(H_3L^{1,2,4})]_2 \cdot 2Py$ (**Ho**₂ · 2Py)