Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

A novel Cd-MOF with enhanced thermo-sensitivity: The rational

design, synthesis and multipurpose applications

Ping Ju,^a Mengting Li,^a Hua Yang,^b Long Jiang,^c Lian Xia,^a Rongmei Kong,^a Ensheng Zhang,^{* a} Fengli Qu^{*a}

^a College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China.

^c Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, PR China

E-mail address: sdzes2006@163.com; fengliquhn@hotmail.com

^b Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China.

LMOF thermometers	Metal center	Detection ranges (K)	Reference
Eu _{0.0069} Tb _{0.9931} -DMBDC	Eu ³⁺ and Tb ³⁺	50-200	1
Tb _{0.9} Eu _{0.1} PIA	Eu ³⁺ and Tb ³⁺	100-300	2
$Tb_{0.957}Eu_{0.043}cpda$	Eu ³⁺ and Tb ³⁺	40-300	3
Tb _{0.98} Eu _{0.02} (OA) _{0.5} (DSTP)·3H ₂ O	Eu ³⁺ and Tb ³⁺	77–275	4
${[Eu_2(L)_3 \cdot (H_2O)_2 \cdot (DMF)_2] \cdot 16H_2O}n$	Eu ³⁺	10–150	5
Tb _{0.95} Eu _{0.05} FTPTC	Eu ³⁺ and Tb ³⁺	25-300	6
Tb0.80Eu0.20BPDA	Eu ³⁺ and Tb ³⁺	298-318	7
ZJU-88⊃perylene	Eu ³⁺	293-353	8

Table S1 Lanthanide metal ions based LMOF thermometers

Table S2. Selected Bond Lengths (Å) and Bond Angles (°)

Bond	Dist.	Bond	Dist.	Bond	Dist.
Cd(1)-O(1)	2.507(2)	Cd(1)-N(1)	2.430(2)	Cd(1)-O(4W)	2.213(2)
Cd(1)-O(5)	2.518(2)	Cd(1)-O(6)	2.268(2)	Cd(1)-O(3)	2.293(2)
Cd(1)-O(2)	2.537(2)	Cd(2)-O(1W)	2.201(2)	Cd(2)-O(1W)	2.344(3)
Cd(2)-O(4)	2.510(2)	Cd(2)-O(3)	2.326(2)	Cd(2)-O(3W)	2.530(3)
Cd(2)-O(2)	2.312(2)	Cd(2)-O(2W)	2.368(2)	Cd(2)-N(2)	2.343(3)
Angle	(°)	Angle	(°)	Angle	(°)
N(1)-Cd(1)-O(1)	141.44(8)	O(1)-Cd(1)-O(2)	51.14(7)	O(1)-Cd(1)-O(5)	71.80(7)
O(3)-Cd(1)-O(2)	69.69(7)	O(3)-Cd(1)-O(5)	141.11(7)	O(3)-Cd(1)-N(1)	97.91(8)
O(3)-Cd(1)-O(1)	120.60(7)	O(6)-Cd(1)-O(2)	90.01(8)	O(6)-Cd(1)-O(3)	87.76(8)

O(6)-Cd(1)-O(5)	54.51(7)	O(6)-Cd(1)-N(1)	96.53(8)	O(6)-Cd(1)-O(1)	87.50(8)
O(5)-Cd(1)-O(2)	114.37(7)	O(4w)-Cd(1)-O(2)	89.99(9)	O(4w)-Cd(1)-O(3)	102.95(10)
O(4w)-Cd(1)-O(6)	168.56(10)	O(4w)-Cd(1)-O(5)	115.45(10)	O(4w)-Cd(1)-N(1)	86.07(9)
O(4w)-Cd(1)-O(1)	83.61(9)	N(1)-Cd(1)-O(2)	165.81(8)	N(1)-Cd(1)-O(5)	79.59(4)
O(2w)-Cd(2)-O(3w)	77.76(10)	O(2w)-Cd(2)-O(4)	163.70(8)	O(2)-Cd(2)-O(2w)	80.60(8)
O(2)-Cd(2)-O(3w)	102.57(9)	O(2)-Cd(2)-O(3)	73.25(7)	O(2)-Cd(2)-O(4)	115.54(8)
O(2)-Cd(2)-N(2)	84.88(8)	O(3)-Cd(2)-O(2w)	135.41(8)	O(3)-Cd(2)-O(3w)	73.64(9)
O(3)-Cd(2)-O(4)	53.77(7)	O(3)-Cd(2)-N(2)	104.05(8)	O(4)-Cd(2)-O(3w)	95.54(10)
N(2)-Cd(2)-O(2w)	108.91(8)	N(2)-Cd(2)-O(3w)	170.91(10)	N(2)-Cd(2)-O(4)	76.37(8)
O(1w)-Cd(2)-O(2w)	82.00(9)	O(1w)-Cd(2)-O(2)	161.62(8)	O(1w)-Cd(2)-O(3w)	79.39(10)
O(1w)-Cd(2)-O(3)	124.16(8)	O(1w)-Cd(2)-O(4)	82.16(8)	O(1w)-Cd(2)-N(2)	95.23(10)

Symmetry codes: #1 1-x,-1-y,-z; #2 +x,-1-y,1/2+z; #3 1-x,-y,-z; #4 +x,-1-y,-1/2+z; #5 1/2-x,-1/2-y,-z .

Fig. S1 FT-IR spectrum of complex 1

Fig. S2 TG curve for complex 1.

Fig. S3 Fluorescent intensity of complex 1 with gradually change temperature from 160 °C to 20 °C ($\lambda_{ex} = 300$ nm, slits: 2.5 nm/5 nm).

Fig. S4 Fluorescent intensity of complex 1 with gradually change temperature from 70 °C to 40 °C (λ_{ex} = 300 nm, slits: 2.5 nm/5 nm).

Fig. S5 Fluorescent intensity of complex 1-H₂O suspension after the addition of acetone ($\lambda_{ex} = 300 \text{ nm}$, $\lambda_{em} = 410 \text{ nm}$, slits: 5 nm/10 nm, all the tests were carried out at 25 °C).

Fig. S6 (a) The UV-vis spectrum of acetone in water; (b) Overlap of absorption spectrum of acetone (the blue line) and fluorescent excitation spectrum of complex 1 (the red line) ; (c) Overlap of absorption spectra of acetone (the red line) and complex 1 (the green line).

Fig. S7 PXRD patterns of complex 1 at 25 °C and 80 °C.

References:

- [1] Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, A luminescent mixed-lanthanide Metal-organic framework thermometer, J. Am. Chem. Soc., 2012, 134, 3979-3982.
- [2] X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen, G. D. Qian, A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer, J. Am. Chem. Soc., 2013, 135, 15559-15564.
- [3] Y. Cui, W. Zou, R. Song, J. Yu, W. Zhang, Y. Yang, G. Qian, A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer, *Chem. Commun.*, 2014, 50, 719-721.
- [4] Y. Wei, R. Sa, Q. Li, K. Wu, Highly stable and sensitive Ln MOF ratiometric thermometers constructed with mixed ligands, *Dalton Trans.*, 2015, 44, 3067-3074.
- [5] D. Wang, Q. Tan, J. Liu, Z. Liu, A stable europium metal-organic framework as a dual-functional luminescent sensor for quantitatively detecting temperature and humidity, *Dalton Trans.*, 2016, 45, 18450-18454.
- [6] D. Zhao, D. Yue, L. Zhang, K. Jiang, G. Qian, Cryogenic luminescent Tb/Eu-MOF thermometer based on a fluorine-modified tetracarboxylate ligand, *Inorg. Chem.*, 2018, 57, 12596-12602.
- [7] D. Zhao, X. Rao, J. Yu, Y. Cui, Y. Yang, G. Qian, Design and synthesis of an MOF thermometer with high sensitivity in the physiological temperature range, *Inorg. Chem.*, 2015, 54, 11193-11199.
- [8] Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, G. Qian, Dualemitting MOF⊃Dye composite for ratiometric temperature sensing, *Adv. Mater.*, 2015, 27, 1420-1425.