Induced Fit Activity-Based Sensing: A Mechanistic Study of Pyrophosphate Detection with a "Flexible" Fe-Salen Complex

Prerna Yadav ${ }^{\text {a }}$, Olivier Blacque ${ }^{\text {a }}$, Andreas Roodt ${ }^{\text {b* }}$ and Felix Zelder ${ }^{a^{*}}$
${ }^{a}$ Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. Fax: +4144635 6803; E-mail: felix.zelder@chem.uzh.ch, www.felix-zelder.net.
${ }^{b}$ Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa. www.ufs.ac.za/natagri/departments-and-divisions/chemistry-home/general/staff Tel: 051 4012547; E-mail: RoodtA@ufs.ac.za

Contents

S1.Calculations and Models S2
S1.1 Basic Equations/Models S2
S1.2 Examples of L.S. Fits S4
S2. Mechanisms and Rate Law S5
S3. Least-Squares Fits of Absorbance/ Fluorescence vs Time Data S9
S4. Global Fit of Kinetic DataS12
S5. Computational Studies S13
S5.1 DFT Optimized Ground-State Structure of [2] S13
S5.2 DFT Optimized Ground-State Structure of [3] S14
S6. Evaluation of Reactions of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } }}$ with Monodentate Nucleophile S16
S7. References S17

S1. Calculations and Models

S1.1 Basic Equations/ Models

All calculations were done by Least-Squares (L.S.) fitting with ORIGIN or Micromath SCIENTIST program suites, using of the data points to appropriate functions. The following basic equations were used, wherein appropriate independent and dependent variables, and parameters were identified, fitted to appropriate relevant data sets:

First-order fitting of Absorbance/Fluorescence vs time data:

$$
\begin{equation*}
\left.\mathrm{A}_{\mathrm{obs}}=\mathrm{A}_{\infty}-\left(\mathrm{A}_{\infty}-\mathrm{A}_{0}\right) \mathrm{e}^{(- \text {-kobs. } t)}\right\} \tag{i}
\end{equation*}
$$

At pH values of around 5 and higher the principal pyrophosphate species are, $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-}$ $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ and $\mathrm{P}_{2} \mathrm{O}_{7}{ }^{4-}$ thus

$$
\begin{equation*}
[\mathrm{PPi}]_{\text {tot }}=\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}\right]+\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]+\left[\mathrm{P}_{2} \mathrm{O}_{7}{ }^{4-}\right] \tag{ii}
\end{equation*}
$$

By incorporating the definitions of the Bronsted acid dissociation constants $K_{\mathrm{a} 2}, K_{\mathrm{a} 3}$ and $K_{\mathrm{a} 4}$ for the pyrophosphate, reorganising, and introducing Equation (ii) therein, Equation (iii) is obtained in terms of the total $[\mathrm{PPi}]_{\text {tot }}$ for the concentration of the identified primary reactive pyrophosphate species, $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$:

$$
\begin{equation*}
\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]=[\mathrm{PPi}]_{\mathrm{tot}}\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} K_{\mathrm{a} 4} /\left[\mathrm{H}^{+}\right]^{2}\right)\right\} \tag{iii}
\end{equation*}
$$

Assuming fast multi-step pre-equilibria (Reactions II and III), with a rate determining final step (Reaction IV), as illustrated in Equation (iv) gives the expression for the pseudo first-order rate constant $k_{\text {obs }}$, as shown in Eq. (v), following the incorporation of the $\mathrm{p} K_{\mathrm{a}}$ values of both the PPi and the Fe-salen $\left(\mathbf{1}-\mathbf{O H}_{\mathbf{2}}\right)$ complex:

$$
\begin{gather*}
1-\mathrm{OH}_{2}+\mathrm{PPi} \underset{(\mathrm{II}-\mathrm{III})}{K_{\mathrm{eq}}}[3] \underset{(\mathrm{IV})}{k_{\mathrm{PPi}}} 5 \tag{iv}\\
k_{\mathrm{obs}}=k_{\mathrm{PPi}} K_{\mathrm{eq}}[\mathrm{PPi}] /\left(1+K_{\mathrm{eq}}[\mathrm{PPi}]\right) \tag{v}\\
k_{\mathrm{obs}}=\xrightarrow{\left(k_{\mathrm{PP} i} K_{\mathrm{eq}}\left[[\mathrm{PPi}]_{\mathrm{tot}}\left(\underline{K}_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} 3 K_{\mathrm{a} 4} /\left[\mathrm{H}^{+}\right]^{2}\right)\right\}\right\}\right)} \\
\left\{1+\left(K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{eq}}\left\{[\mathrm{PPi}]_{\mathrm{tot}}\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} K_{\mathrm{a} 4} 4\left[\mathrm{H}^{+}\right]^{2}\right)\right\}\right\}\right)\right\} \tag{vi}
\end{gather*} .
$$

From these fits, values of $k_{\text {PPi }}$ and $K_{\text {eq }}$ were obtained, as listed.
Equation (vi) also defines the pH dependence of the pseudo first-order rate constant as a function of the species distribution of the PPi and $\mathbf{1 - 0 \mathbf { O H } _ { 2 }}$. In this case, all known parameters were fixed, allowing the pH to vary.

Temperature studies were finally completed. In these, a model consisting of a combination of Equation (vi) and the Eyring equation, Equation (vii) was done, thus yielding the activation parameters (ΔS^{\neq}and ΔH^{\neq}) directly from 26 observations (Table S2). This model required two independent variables ($\mathrm{T},[\mathrm{PPi}]_{\text {tot }}$), with k_{obs} the dependent variable.

$$
\begin{equation*}
k=\left(k_{\mathrm{B}} \mathrm{~T} / \mathrm{h}\right) \cdot \mathrm{e}^{(\Delta \Delta \neq / \mathrm{R})} \cdot \mathrm{e}^{(-\Delta \mu \neq \mathrm{RT})} \tag{vii}
\end{equation*}
$$

$k_{\mathrm{B}}=$ Boltzmann constant $\left(1.380649 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)$
$\mathrm{T}=$ Temperature (in K)
$\mathrm{h}=$ Planck's constant ($6.62607015 \times 10^{-34} \mathrm{~J}$ s)
$k=$ Reaction rate constant (in s${ }^{-1}$)
$\Delta S^{\neq}=$Entropy of activation (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
$\Delta H^{\neq}=$Enthalpy of activation (in $\mathrm{kJ} \mathrm{mol}^{-1}$)

S1.2. Examples of L.S. Fits to Determine the Pseudo First-Order Rate Constants

Figure S1. Left: Changes in absorbance of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } } (1 6 \mu \mathrm { M }) \text { in presence of PPi }}$ (10 equiv; 0.16 mM) at $y \mathrm{~nm}(y=$ between 375 to 385 nm) with time at 10 different pH from 5.36 to 8.42 at $25{ }^{\circ} \mathrm{C}$ and their respective individual pseudo first-order kinetic fits. Right: Changes in absorbance of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } }}(16 \mu \mathrm{M})$ in presence of $\mathrm{PPi}(10$ equiv; 0.16 mM$)$ at $y \mathrm{~nm}(y$ $=324 \mathrm{~nm}(\mathrm{pH} 4.50), 322 \mathrm{~nm}(\mathrm{pH} 5.05), 378 \mathrm{~nm}(\mathrm{pH} 9.40)$) with time at 3 different pH^{*} (4.50, 5.05 and 9.40) at $25^{\circ} \mathrm{C}$ along with their respective individual pseudo first-order kinetic fits. [Lines indicate L.S. fits]
*First-order kinetic traces are shown separately for two acidic pH and one basic pH . At acidic pH , considerable changes in absorbance occur at lower wavelengths in comparison to that of other tested pH values.

Table S1. List of observed pseudo first-order rate constants for reaction of $\mathbf{1 - 0 \mathbf { O H } _ { \mathbf { 2 } }}(16 \mu \mathrm{M})$ and PPi (10 equiv; 0.16 mM) at 13 different pH values at $25^{\circ} \mathrm{C}$.

$\mathbf{p H}$	$\boldsymbol{k}_{\text {obs }}\left(\mathbf{s e c}^{\left.\mathbf{- 1} \times \mathbf{1 0}^{-\mathbf{3}}\right)}\right.$
4.50	0.066 ± 0.001
5.05	0.100 ± 0.002
5.36	0.19 ± 0.01
5.71	0.234 ± 0.004
6.02	0.370 ± 0.008
6.33	0.40 ± 0.02
6.70	0.40 ± 0.02
7.00	0.420 ± 0.006
7.35	0.369 ± 0.004
7.67	0.293 ± 0.003
8.12	0.225 ± 0.005
8.42	0.180 ± 0.004
9.40	0.090 ± 0.001

S2. Mechanism and Rate Law

Derivation of Rate Law: Disassembly of the $\mathrm{Fe}^{\mathrm{III}}$-complex (1-OH2) by Pyrophosphate (PPi)

The total Rate law for the Disassembly of $\mathbf{1 - 0 \mathbf { O H } _ { \mathbf { 2 } }}$ is derived based on Scheme 1:

Scheme 1. Simplified reaction scheme for the disassembly as studied kinetically, with $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } }}$ and $\mathbf{1 - O H}$ \{interrelated by the acid dissociation constant K_{a}, and with $[\mathbf{1}]_{\text {tot }}=\left[\mathbf{1 - O H} \mathbf{O}_{\mathbf{2}}\right]+[\mathbf{1}-$ $\mathbf{O H}]\} ;[2]$ and [3] are assumed reactive intermediate species, $\mathbf{5}=$ final Fe-PPi species; 4 $=3$ -chloro-5-sulfosalicylaldehyde. Moreover $[\mathrm{PPi}]_{\text {tot }}=$ total pyrophosphate concentration, of which the parent tetra-acid exhibits four $\mathrm{p} K_{\mathrm{a}}$ values, denoted by $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}, K_{\mathrm{a} 3}$ and $K_{\mathrm{a} 4}$. Note that all charges are omitted for simplicity.
 [1-OH] $\}$; [2] (with $\mathrm{PPi}=$ mono-coordinated, $[3](\mathrm{PPi}=$ bidentate coordinated with possible hydrogen bonding), $\mathbf{4}=3$-chloro-5-sulfosalicylaldehyde; $\mathbf{5}=\mathrm{Fe}(\mathrm{PPi})_{\mathrm{n}}$. ; the final Fe-complex after disassembly. Charges are omitted. Moreover $[\mathbf{P P i}]_{\text {tot }}=$ total pyrophosphate concentration, of which the parent tetra-acid exhibits four $\mathrm{p} K_{\mathrm{a}}$ values, denoted by $K_{\mathrm{a} 1}, K_{\mathrm{a} 2}, K_{\mathrm{a} 3}$ and $K_{\mathrm{a} 4}{ }^{[\mathrm{S} 1]}$
2. The above reaction scheme was concluded based on the following systematic experiments:
(a) $\mathbf{1 -} \mathbf{O H}_{\mathbf{2}}$ acts as a monoprotic acid (with the formation of the hydroxido species) and exhibits a $\mathrm{p} K_{\mathrm{a}}$ value, denoted by $\mathrm{p} K_{\mathrm{a}}$ of 6.90 , as determined from a potentiometric titration, see Reaction (I). ${ }^{[52]}$
(b) From a pH variation at fixed $[\mathrm{PPi}]_{\text {tot }}$ and $[1]_{\text {tot }}$ a significant rate increase was observed where the monoprotonated tri-anion, $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$, is the principal pyrophosphate species in solution. However, the maximum rate was reached where the product of the populations of [1$\left.\mathbf{O H}_{2}\right]\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]$ was a maximum (see Figure 4).
(c) Upon variation of $[\mathrm{PPi}]_{\text {tot }}$ at this pH , a rate-limiting dependence on $[\mathrm{PPi}]_{\text {tot }}$, as manifested in a plateau reached, was observed, indicating a potential rapid pre-equilibrium reaction (in the above mentioned scheme indicated by the combination of Reaction (II) and (III)), denoted by $K_{\text {eq }}=K_{1} K_{2}$, and a consecutive rate limiting first-order formation of $\mathbf{5}$ (holding also for the formation of 4), denoted by $k_{\text {PPi }}$.
(d) The formation of species $\mathbf{5}$, assuming to be an $\mathrm{Fe}^{\text {III-pyrophosphate species, is generated in }}$ a rate-determining step as defined in Reaction IV and was studied by an extended UV/Vis kinetic study.
(e) The generation of fluorescence (studied by a fluorescence kinetic study) coincides exactly with Reaction IV, following an "induction period" of a few minutes, assumed to be representing the formation of 4 .
(f) The "induction period" observed from the above indicates potentially two relatively quick pre-equilibria, denoted by Reactions (II) and (III) in the above scheme, in agreement with (c) above.
(g) Upon analysis of the UV/Vis spectra at the isosbestic point (at $\lambda=385 \mathrm{~nm}$) the pre-reactions attributed to the "induction period" are clearly observed, and again agrees with the fluorescence data. It is however noted that the Absorbance/Fluorescence contributions of these assumed preequilibria to the total Abs/F.I. are small (see Figures 3 and 6, and Section S5).
(h) Attempted study of Reaction (II) using monodentate entering nucleophile F^{-}, only resulted in slower reactions, indicating non-favourable reactions, and in agreement with potential decomposition of the parent complex.
3. From the above, the Rate Law describing the experimental observations is derived, as discussed below.

The formation of species $\mathbf{5}$ is given by Equation 1: $\mathrm{d}[\mathbf{5}] / \mathrm{dt}=k_{\mathrm{PPi}}[\mathbf{3}]$

There is, from the pH variation experiments, some indication of a slow, concurrent reaction parallel to k_{PPi} as the principal one, defined by a rate constant k_{22}. If this is the case, an additional step, not indicated in Scheme 1, may be considered (typically, a slow background hydrolysis, see Discussion in manuscript). This is for completeness indicated in Equation 15, but not analysed further within this study.

Assuming that only the $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ reacts with the aqua species $\mathbf{1 - \mathbf { O H } _ { 2 }}$, the pre-equilibria in Reaction (II) and (III) can be written by Equation 2 and 3:

$$
\begin{align*}
& K_{1}=[2] /\left(\left[1-\mathrm{OH}_{2}\right]\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]\right. \tag{2}\\
& K_{2}=[3] /[2] \tag{3}
\end{align*}
$$

The overarching equilibrium from $\mathbf{1 - 0 \mathbf { O H } _ { \mathbf { 2 } }}$ via $\mathbf{2}$ to $\mathbf{3}$ is then given by Equation 4:

$$
\begin{equation*}
K_{1} K_{2}=K_{\text {eq }}=[3] /\left[\left[1-\mathbf{O H}_{2}\right]\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]\right. \tag{4}
\end{equation*}
$$

When defined as a monoprotic acid, the acid dissociation constant for $\mathbf{1 - 0 \mathbf { O H } _ { \mathbf { 2 } }}$ is given by Equation 5:

$$
\begin{equation*}
K_{\mathrm{a}}=\left([\mathbf{1 - O H}]\left[\mathrm{H}^{+}\right]\right) /\left[\mathbf{1}-\mathbf{O H}_{\mathbf{2}}\right] \tag{5}
\end{equation*}
$$

Moreover, the total reactant $\mathrm{Fe}^{\text {III }}$ in solution is given by Equation 6, which upon introducing Equation 5, yields Equation 7:

$$
\begin{equation*}
[\mathbf{1}]_{\mathrm{tot}}=[\mathbf{1}-\mathbf{O H}]+\left[\mathbf{1}-\mathbf{O H}_{\mathbf{2}}\right] \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
[\mathbf{1 - O H} \mathbf{2}]=[\mathbf{1}]_{\mathrm{tot}} /\left(K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right) \tag{7}
\end{equation*}
$$

At pH values of around 5 and higher the principal pyrophosphate species are, $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-} \mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$ and $\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$ thus

$$
\begin{equation*}
[\mathrm{PPi}]_{\text {tot }}=\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}\right]+\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]+\left[\mathrm{P}_{2} \mathrm{O}_{7}{ }^{4-}\right] \tag{8}
\end{equation*}
$$

Based on the definitions of $K_{\mathrm{a} 2}, K_{\mathrm{a} 3}$ and $K_{\mathrm{a} 4}$, reorganising, and introducing in Equation 8, Equation 9 is obtained for the assumed primary reactive pyrophosphate species, $\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}$:

$$
\begin{equation*}
\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]=[\mathrm{PPi}]_{\mathrm{tot}}\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} K_{\mathrm{a} 4} /\left[\mathrm{H}^{+}\right]^{2}\right)\right\} \tag{9}
\end{equation*}
$$

Before Reaction (IV) commences, the total amount of $\mathrm{Fe}^{\text {III }}\left\{[\mathbf{1}]_{\mathrm{tot}}\right.$; i.e. the amount $\mathrm{Fe}^{\text {III }}$ started with $\}$ is given by uncoordinated $\mathrm{Fe}^{\text {III }}\left\{[\mathrm{FeO}]_{\text {tot }}\right\}$ and coordinated $\mathrm{Fe}^{\text {III }}\{[3]\}$ as shown by Equation 10:

$$
\begin{equation*}
[\mathbf{1}]_{\mathrm{tot}}=[\mathrm{FeO}]_{\mathrm{tot}}+[\mathbf{3}] \tag{10}
\end{equation*}
$$

Introducing Equation 7 into Equation 4 yields Equation 11:

$$
\begin{equation*}
K_{\mathrm{eq}}=[3] /\left\{[\mathrm{FeO}]_{\mathrm{tot}} /\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]\right\} \tag{11}
\end{equation*}
$$

Reorganising Equation 11 yields Equation 12:

$$
\begin{equation*}
[\mathrm{FeO}]_{\mathrm{tot}}=[3]\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right) /\left(K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]\right) \tag{12}
\end{equation*}
$$

Introducing Equation 12 into Equation 10 yields Equation 13 after re-organising, which can be further manipulated to give Equation 14:

$$
\begin{equation*}
[\mathbf{1}]_{\mathrm{tot}}=[\mathbf{3}]\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right) /\left(K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]\right)+[\mathbf{3}] \tag{13}
\end{equation*}
$$

Thus

$$
[\mathbf{3}]=\left\{[\mathbf{1}]_{\text {tot }}\left\{\left(1+K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right) /\left(K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]\right)+1\right\}\right\} \times\left(K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right] / K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]\right)
$$

or

$$
\begin{equation*}
[\mathbf{3}]=\left([\mathbf{1}]_{\mathrm{tot}} K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}^{3-}\right]\right) /\left\{1+\left(K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{eq}}\left[\mathrm{HP}_{2} \mathrm{O}_{7}{ }^{3-}\right]\right)\right\} \tag{14}
\end{equation*}
$$

By introducing (i) Equation 9 in Equation 14, and (ii) the resultant into Equation 1, and (iii) assuming $[\mathrm{PPi}]_{\text {tot }} \gg[\mathbf{1}]_{\text {tot }}$ (pseudo first-order conditions) the total expression for the pseudo first-order rate constant ($\boldsymbol{k}_{\mathbf{o b s}}$) from this Rate Law for the formation of the final product(s) 4, $\mathbf{5}$ is obtained as given in Equation 15:

$$
\begin{align*}
& \boldsymbol{k}_{\mathbf{o b s}}=k_{\mathrm{pPi}}[\mathbf{3}] \\
& \left.=\left(k_{\mathrm{pp} i} \underline{K}_{\mathrm{eq}}\left\{[\mathrm{PPi}]_{\mathrm{ot}}\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3}\right]\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} \underline{K}_{\mathrm{a} 4} /\left[\mathrm{H}^{+}\right]^{2}\right)\right\}\right\}\right) \quad+k_{22} \ldots \tag{15}\\
& \left.1+\left(K_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{eq}}\left\{[\mathrm{PPi}]_{\mathrm{tot}}\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right) /\left\{1+\left(K_{\mathrm{a} 3} /\left[\mathrm{H}^{+}\right]\right)+\left(K_{\mathrm{a} 3} K_{\mathrm{a} 4} 4\left[\mathrm{H}^{+}\right]^{2}\right)\right\}\right\}\right)\right\}
\end{align*}
$$

Equation 15 describes the total pH dependence of the reaction as studied, and was utilised in the L.S. fits of the (i) pH variation, (ii) the evaluation of the effect of total pyrophosphate and the (iii) temperature study (see Figures 4, 5 and 6, respectively).

S3. Least-Squares Fits of Absorbance (Fluorescence) vs Time data

Figure S2. Left: Changes in absorbance at 385 nm of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } } (1 6 \mu \mathrm { M }) \text { in presence of } \mathrm { PPi } (1 0)}$ equiv; 0.16 mM) with time at 5 different temperatures at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual pseudo first-order kinetic fits. Right: Changes in absorbance at 385 nm of 1$\mathbf{O H}_{\mathbf{2}}(16 \mu \mathrm{M})$ in presence of $\operatorname{PPi}(15$ equiv; 0.24 mM$)$ with time at 5 different temperatures at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual pseudo first-order kinetic fits. [Lines indicate L.S. fits]

Figure S3. Left: Changes in absorbance at 385 nm of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } } (1 6 \mu \mathrm { M }) \text { in presence of } \mathrm { PPi } (2 0) ~}$ equiv; 0.32 mM) with time at 5 different temperatures at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual pseudo first-order kinetic fits. Right: Changes in absorbance at 385 nm of 1$\mathbf{O H}_{\mathbf{2}}(16 \mu \mathrm{M})$ in presence of PPi (30 equiv; $0.48 \mathrm{mM}, 35$ equiv; $0.56 \mathrm{mM}, 40$ equiv; 0.64 mM) with time at 3 different temperatures at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual pseudo first-order kinetic fits. [Lines indicate L.S. fits]

 0.80 mM) with time at 5 different temperatures at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual pseudo first-order kinetic fits. [Lines indicate L.S. fits]

Table S2. List of $\mathrm{k}_{\text {obs }}$ values at different temperatures for different conc. of PPi at pH 7.35

$\begin{aligned} & {[\mathbf{P P i}]_{\text {tot }}} \\ & \left(\mathrm{M} \times 10^{-3}\right) \end{aligned}$	$12^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	$\begin{gathered} \mathbf{2 5}^{\mathbf{}} \mathbf{C} \\ \text { obs }\left(\sec ^{-1} \times 10^{-3}\right) \end{gathered}$	$32{ }^{\circ} \mathrm{C}$	$38{ }^{\circ} \mathrm{C}$
0.16	0.127 ± 0.001	0.229 ± 0.001	0.444 ± 0.004	0.704 ± 0.005	1.25 ± 0.02
0.24	0.163 ± 0.006	0.314 ± 0.001	0.687 ± 0.008	0.992 ± 0.009	1.76 ± 0.04
0.32	0.217 ± 0.002	0.376 ± 0.002	0.952 ± 0.007	1.240 ± 0.014	2.11 ± 0.06
0.48	0.295 ± 0.001	0.540 ± 0.002	1.025 ± 0.008	-	-
0.56	-	-	1.091 ± 0.008	-	-
0.64	0.351 ± 0.002	-	1.22 ± 0.01	-	-
0.80	0.383 ± 0.003	0.714 ± 0.004	1.38 ± 0.01	2.430 ± 0.002	4.12 ± 0.03

*The blank places indicate that $k_{\text {obs }}$ values for the respective conc. of PPi at the associated temperature were not measured. For these cases, measurements at directly higher conc. of PPi showed saturation kinetics.

Figure S5. Changes in fluorescence intensity at $500 \mathrm{~nm}\left(\lambda_{\mathrm{ex}}=385 \mathrm{~nm}\right)$ of $\mathbf{1 - 0 \mathbf { O H } _ { 2 }}(16 \mu \mathrm{M})$ in presence of 5 different conc. of PPi with time at $28^{\circ} \mathrm{C}$ at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) and their individual kinetic fits. [Lines indicate L.S. fits]. (a) First part of reaction fitted to a single exponential [Eq. (i) above]; (b) total reaction [except 10 eq PPi, which showed no $2^{\text {nd }}$ reaction, see (a)] fitted to the two-exponential function describing two consecutive reactions: $\mathrm{A}_{\mathrm{obs}}=\mathrm{A}_{\mathrm{B} \infty}$ $\left(\mathrm{A}_{\mathrm{A} \infty}-\mathrm{A}_{\mathrm{A} 0}\right) \operatorname{Exp}\left(-k_{\mathrm{ab}} \cdot \mathrm{t}\right)-\left(\mathrm{A}_{\mathrm{B} \infty}-\mathrm{A}_{\mathrm{A} \infty}\right) \operatorname{Exp}\left(-k_{\mathrm{bc}} \mathrm{t}\right)$; with $\mathrm{A}=\mathrm{Abs}$ or FI.

Table S3. List of $\mathrm{k}_{\text {obs }}$ values from fluorescence kinetic traces at different conc. of PPi at $28^{\circ} \mathrm{C}$ at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$). [Fits in Figure S5]

$[\mathbf{P P i}]\left(\mathbf{M} \times \mathbf{1 0}^{-\mathbf{3}}\right)$	$\mathbf{k}_{\mathbf{0 b s}}\left(\mathbf{s e c}^{\left.\mathbf{- 1} \times \mathbf{1 0}^{-\mathbf{3}}\right)}\right.$	
	Single exponential fit ${ }^{\text {a) }}$	Two exponential fit $\left.{ }^{\mathrm{b}}\right)$
0.16	0.610 ± 0.001	0.610 ± 0.003
0.32	1.111 ± 0.008	1.100 ± 0.005
0.48	1.30 ± 0.02	1.280 ± 0.006
0.64	1.52 ± 0.04	1.510 ± 0.006
0.80	1.80 ± 0.07	1.70 ± 0.01

${ }^{\text {a) }}$ Figure S5(a) ${ }^{\text {b }}$ Figure S5(b); $\mathrm{A}_{\text {obs }}=\mathrm{A}_{\mathrm{B} \infty}-\left(\mathrm{A}_{\mathrm{A} \infty}-\mathrm{A}_{\mathrm{A} 0}\right) \operatorname{Exp}\left(-k_{\mathrm{ab}} \cdot \mathrm{t}\right)-\left(\mathrm{A}_{\mathrm{B} \infty}-\mathrm{A}_{\mathrm{A} \infty}\right) \operatorname{Exp}\left(-k_{\mathrm{bc}} \cdot \mathrm{t}\right)$

S4. Global Fit of Kinetic Data

Figure S6: Global L.S. fit of $k_{\mathrm{obs}} v s[\mathrm{PPi}]_{\text {tot }}$ at six temperatures: $12,18,25,32,38^{\circ} \mathrm{C}$ (Abs vs time) and $28^{\circ} \mathrm{C}$ (F.I. vs time; (a) red line) and pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$). The L.S. fit was achieved using Equation 15 above [or Equation (vi), Par. 2]; and the Eyring equation [(Equation (vii), Par. S2] and all the individual k_{obs} values as a function of T and [PPi] $]_{\text {tot }}$ [Lines indicate L.S. fitted values]

S5. Computational Studies

S5.1. Coordinates and Total Energies of the DFT Optimized Ground-State Structure of
[2]

$\Delta \mathrm{E}=0.0 \mathrm{kcal} / \mathrm{mol}$
Figure S7. A structural representation of DFT Optimized Ground-State Structure of [2].

C	-2.29908900	-1.50510300	0.16240700
C	-3.05630100	-2.50013200	-0.58647300
C	-4.42893800	-2.59686600	-0.45902800
H	-4.99028700	-3.33062400	-1.02577800
C	-5.10590700	-1.74117700	0.41806100
C	-4.40194600	-0.78218900	1.18956100
H	-4.95420300	-0.15768800	1.88389800
C	-3.03160200	-0.64640800	1.07604500
C	-2.35358300	0.30898800	1.92500900
H	-2.97225800	0.82881400	2.65724400
C	-0.48446700	1.48700200	2.87763700
H	-0.16729500	0.88670200	3.73800800
H	-1.21399700	2.22931800	3.20983500
C	0.72601800	2.15671600	2.22425100
H	0.36051400	2.83718400	1.44715000
C	2.71119800	0.94523500	1.46966100
H	3.30762800	1.65144500	2.04341900
C	3.46064100	-0.05677400	0.74058200
C	4.83768400	-0.06137700	0.85304000
H	5.33338100	0.66843800	1.48450900
C	5.62444100	-1.01380000	0.15609200
C	5.02904400	-1.96966500	-0.67431000
H	5.65418900	-2.68419100	-1.19714900
C	3.65410500	-1.99167300	-0.81480100
C	2.80960800	-1.03907600	-0.10591100
N	-1.09074800	0.57003000	1.89195000
N	1.42659600	1.06447600	1.48401300
O	-1.04079300	-1.44255300	-0.00902400
O	1.54927900	-1.11428400	-0.25605000

Fe	0.17064400	-0.08692700	0.57625100
O	-0.30387000	1.09006600	-0.88591200
Cl	-2.19640000	-3.53936700	-1.64839800
Cl	2.89174600	-3.15090900	-1.82578200
S	-6.89894800	-1.82067300	0.58395100
O	-7.31938000	-2.99631200	-0.20992400
O	-7.09585300	-1.94538700	2.05150800
S	7.41374900	-0.95708200	0.36465100
O	7.94443800	-2.07391100	-0.44786500
O	7.75352000	0.40228800	-0.13492000
O	-7.32253600	-0.50546200	0.02961800
O	7.57554300	-1.11431400	1.83454000
C	1.57692700	2.93204300	3.22300700
H	2.01557900	2.27510200	3.98118400
H	2.37187500	3.49458700	2.72577200
H	0.93731700	3.65979100	3.73069600
P	0.22836500	2.20707900	-1.79407800
O	1.33256200	3.09450700	-1.21032700
O	-1.11805400	3.11873200	-2.12271400
O	0.79146400	1.78970800	-3.15651900
P	-2.01767900	3.98473900	-1.10801000
O	-1.60624300	5.45835100	-1.02288600
O	-3.46363900	3.85539600	-1.75031800
O	-1.89057300	3.52322400	0.34210100
H	-3.58202200	3.08630700	-2.33772000

```
zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
Sum of electronic and thermal Energies=
Sum of electronic and thermal Enthalpies=
Sum of electronic and thermal Free Energies=
```

```
0.323672 (Hartree/Particle)
-5556.158147
        0.364939
        0.365883
        0.241718
        -5556.199413
        -5556.157203
    -5556.281368
```


S5.2. Coordinates and Total Energies of the DFT Optimized Ground-State Structure of

 [3]

$\Delta E=-34.1 \mathrm{kcal} / \mathrm{mol}$

Figure S8. A structural representation of DFT Optimized Ground-State Structure of [3].

C	2.45080300	-0.39495200	0.35066100
C	3.29675600	-0.96775200	1.39281800
C	4.57267600	-1.41475300	1.11761100
H	5.19463500	-1.83837000	1.89764600
C	5.07228300	-1.32433600	-0.18737500
C	4.28195200	-0.77858500	-1.23032500
H	4.69688900	-0.72342400	-2.23112900
C	2.99864700	-0.32330400	-0.99111600
C	2.25282600	0.21533500	-2.10651700
H	2.78001700	0.24990300	-3.06048900
C	0.40680800	1.20843000	-3.28955100
H	-0.00596100	0.37639700	-3.86989300
H	1.15045900	1.73666200	-3.89041400
C	-0.72620200	2.15560700	-2.85228200
H	-0.29506800	3.04723900	-2.39098900
C	-2.58850400	0.98447800	-1.74635700
H	-3.29157800	1.41838800	-2.45515300
C	-3.05111300	-0.12847200	-0.94438400
C	-4.39552800	-0.41928200	-0.83543900
H	-5.13997700	0.26813300	-1.22231400
C	-4.82051900	-1.63418200	-0.23358700
C	-3.89712800	-2.60096900	0.19073800
H	-4.25851800	-3.52953900	0.61746700
C	-2.54454700	-2.36596400	0.04792400
C	-2.07193900	-1.09358600	-0.48235500
N	1.04072200	0.64962300	-2.07218600
N	-1.36434700	1.38675200	-1.75325400
0	1.27932900	0.00039100	0.65923600
0	-0.81313600	-0.88953900	-0.55635300
Fe	-0.05762900	0.81415800	-0.48625900
0	-1.21696100	1.16738200	0.93287700
Cl	2.66608400	-1.08173900	2.98770700
Cl	-1.38291300	-3.52612800	0.52830300
S	6.73003200	-1.90045300	-0.58487700
0	7.28791900	-2.41933600	0.68190500
0	6.46910600	-2.92684800	-1.62955200
S	-6.58671000	-1.90108100	-0.02725100
0	-6.90509200	-0.86742200	1.00079300
0	-7.14121500	-1.59978700	-1.37062500
0	7.37970500	-0.66731600	-1.10527900
0	-6.73606500	-3.29893600	0.42577400
C	-1.64870500	2.54841700	-3.99778100
H	-2.08946800	1.67670800	-4.49164400
H	-2.44404400	3.21529400	-3.65312500
H	-1.05811100	3.09647800	-4.73745400
P	-1.02067100	1.78582900	2.36327900
0	-2.24717200	2.17068400	3.08761200
0	-0.04566500	3.10006900	2.07647800
0	-0.08184200	0.82583100	3.22810600
P	0.48952800	3.69289200	0.67774700
0	1.78129600	4.47429300	0.91922400
0	0.71978000	2.45326700	-0.26646500
0	-0.45039600	4.74974400	0.09044200
H	0.61641700	0.38425700	2.70533500
Zero-point correction=			0.326984 (Hartree/Particle)
Thermal correction to Energy=			0.366380
Thermal correction to Enthalpy=			0.367324
Thermal correction to Gibbs Free		Energy=	0.251666
		Energies=	-5556.253812
	and thermal En	ergies=	-5556.214416

S6. Evaluation of $\mathbf{1 -} \mathbf{O H}_{2}$ Reaction with Monodentate Nucleophile

 0.16 mM) at pH 7.35 ([Tris buffer $]=10 \mathrm{mM})$ at $12{ }^{\circ} \mathrm{C}$. Inset (A) : Changes in absorbance of $\mathbf{1 -}$ $\mathbf{O H}_{\mathbf{2}}(16 \mu \mathrm{M})$ with time at 2 different wavelengths in presence of $\mathrm{F}^{-}(10$ equiv; 0.16 mM$)$ at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) at $12{ }^{\circ} \mathrm{C}$ and associated pseudo first-order fits.

Figure S10. Changes in absorbance at 385 nm of $\mathbf{1 - \mathbf { O H } _ { \mathbf { 2 } } (1 6 \mu \mathrm { M }) \text { with time in presence only }}$ $\operatorname{PPi}\left(50\right.$ equiv; 0.80 mM) and both $\operatorname{PPi}(50$ equiv; 0.80 mM$)$ and $\mathrm{F}^{-}(500 \text { equiv; } 8.00 \mathrm{mM})^{*}$ at pH 7.35 ([Tris buffer] $=10 \mathrm{mM}$) at $12^{\circ} \mathrm{C}$. The respective pseudo first-order fitted time traces are also shown; no considerable change in the yielding values of $\mathrm{k}_{\mathrm{obs}}$ in both cases were found. $\left(\mathrm{k}_{\text {obs }(\mathrm{F}-+\mathrm{PPi})}=(0.373 \pm 0.001) \times 10^{-3} \mathrm{sec} ; \mathrm{k}_{\mathrm{obs}(\mathrm{PPi})}=(0.383 \pm 0.003) \times 10^{-3} \mathrm{sec}\right)$. [Lines indicate
L.S. fits]. ${ }^{*}{ }^{-}$(500 equiv; 8.00 mM) was incubated for almost 10 min before PPi (50 equiv; 0.80 mM) was added.

S7. References

[S1]. P. Yadav, M. Jakubaszek, B. Spingler, B. Goud, G. Gasser, F. Zelder, Chem. Eur. J. 2020, 26, 5717-5723.
[S2]. R. B. Stockbridge, R. Wolfenden, J. Biol. Chem. 2011, 286, 18538-18546.

