Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supplementary data

Water-mediated reduction of [Cu(dmp)₂(CH₃CN)]²⁺: Implications of the structure of a classical complex on its activity as an anticancer drug

Pedro Levín, †[a] María C. Ruiz, †[b] Adolfo I. B. Romo, [c] Otaciro R. Nascimento, [d] Ana L. Di Virgilio, [b] Allen G. Oliver, [e] Alejandro P. Ayala, [f] Izaura C. N. Diogenes, *[c] Ignacio E. León, *[b] Luis Lemus*[a]

- [a] Departamento química de los materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile. E-mail: luis.lemus@usach.cl
- [b] Centro de Química Inorgánica CEQUINOR (CONICET-UNLP), Bv 120 1465 1900, La Plata, Argentina. E-mail: e-mail: ileon@biol.unlp.edu.ar
- [c] Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará, Cx. Postal 6021 Fortaleza, CE, 60451-970, Brazil.
 E-mail: izaura@dqoi.ufc.br
- [d] Departamento de Física Interdiciplinar, Instituto de Física de São Carlos Universidade de São Paulo, CP 369, CEP 13560-970 São Carlos, SP, Brazil.
- [e] Department of Chemistry and Biochemistry, University of Notre Dame, 46556-5670 Notre Dame, IN, USA.
- [f] Departamento de Física Universidade Federal do Ceará, Fortaleza, CE, 65455-900, Brazil.
- † Coauthors contributed equally to this work.
- * Corresponding Authors:

Luis Lemus, e-mail: luis.lemus@usach.cl

Ignacio E. León, e-mail: ileon@biol.unlp.edu.ar
Izaura C. N. Diogenes, e-mail: izaura@dqoi.ufc.br

Crystallographic structures

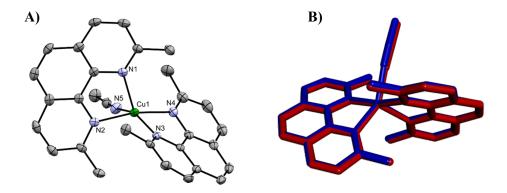
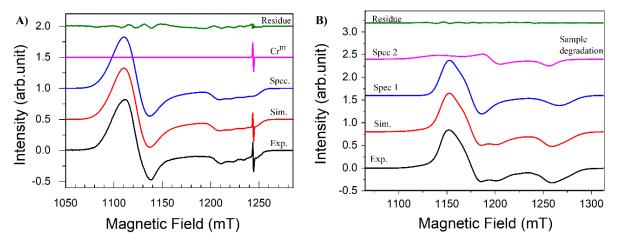
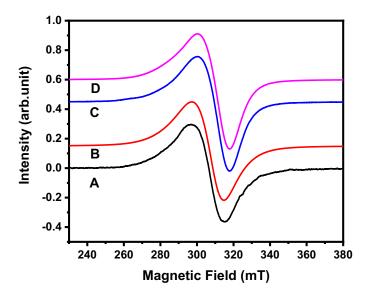



Figure S1. A) ORTEP diagram of the molecular structure of $[Cu(dmp)(CH_3CN)](CIO_4)_2$ reported in this work. B) Overlay of the structure of this work (red) with the previously reported (blue).¹

EPR and UV-vis measurements

Figure S2. EPR spectra in solid state of A) $[Cu(dmp)_2(CH_3CN)](ClO_4)_2$ and B) $[Cu(phen)_2(CH_3CN)](ClO_4)_2$. Experimental in black line, simulated spectra in red line and principal species in blue line. Spectral simulations were made with the EasySpin program.² The pink line in the A figure corresponds to MgO:Cr^{III} used as g marker (g=1.9797) to calibrate the magnetic field


EPR spectra of $[Cu(phen)_2(ClO_4)](ClO_4)_2$ and $[Cu(dmp)_2(ClO_4)](ClO_4)_2$ in the solid state were recorded at 298 K in a Varian E-110 Q-band instrument with a cylindrical cavity, and a frequency of 35.48950 and 34.47017 GHz, respectively. The sample (around 2 mg) was transferred to a quartz capillary tube (1 mm internal diameter) before being inserted into the spectrometer cavity; microwave power 10 mW; modulation amplitude 0.4 mT. Spectral simulations were made by using the EasySpin program.² The R parameter value was determined by using $(g_V-g_Z)/(g_X-g_V)^{-3/4}$

Both complexes show rhombic spectra, in agreement with a pentacoordinated Cu^{\parallel} center in a geometry intermediate between TBPY-5 and SPY-5. For $[Cu(dmp)_2(CH_3CN)](ClO_4)_2$, calculated g tensor values are g_x =2.223, g_y =2.193, g_z =2.008 and R=6.17. For $[Cu(phen)_2(CH_3CN)](ClO_4)_2$ g values are g_x =2.203, g_y =2.156, g_z =2.000, and R=3.32. The ground state in both compounds is composed by a linear combination of the d_z^2 and $d_x^2-g^2$ orbitals, however, the R parameters are indicative that the main contribution arises from the d_z^2 orbital as the ground state,³ which is related to geometries closer to the TBPY-5.

In $[Cu(phen)_2(CH_3CN)](CIO_4)_2$ the geometry is closer to a TBPY-5 with each phenanthroline ligand providing an equatorial and an axial nitrogen around Cu^{\parallel} . The fifth coordination site is occupied by a CH_3CN fragment. The calculated g_z value of is close to the free electron ($g_e = g_{free \, electron} = 2.0023$), which also indicates that the unpaired electron is in d_z^2 , due to the crystal field generated by the ligands in a TBPY-5 geometry. It was also possible to observe in the EPR spectrum, a small amount of sample corresponding to secondary species of Cu^{\parallel} ($g_x=2.228$, $g_y=2.121$, $g_z=2.018$, R=0.95) (fig. S2 B, pink line). Probably, the molecule undergoes an exchange of the fifth ligand for a molecule of water, which increases the contribution of the $d_x^2-y^2$ orbital. 3,5,6,7 On the other hand, the solid was presumably not sufficiently magnetically diluted to yield EPR spectra indicative of the weak exchange between neighbor molecules, producing collapse of Cu nuclear (I=3/2) hyperfine lines.

For $[Cu(dmp)_2(CH_3CN)](CIO_4)$, the main contribution to the ground-state HOMO arises from the d_z^2 , acccording to the R values calculated. However, this complex presents a slightly higher degree of distortion from the TBPY-5 geometry, mainly due to the steric hindrance imparted by the methyl groups in the dmp ligand. Furthermore, it was possible to obtain hyperfine couplings for this complex, presenting values $A_x = 20.6$ G, $A_y = 21.0$ G and $A_z = 123.5$ G. The A parameters are typical of a Cu^{II} complex in a predominantly axially elongated five-coordinate geometry $(g_z \sim g_e < (g_x, g_y), A_z \gg A_y \sim A_x)$ and consistent with a d_z^2 electronic ground state. Hyperfine coupling with the Cu nucleus (I = 3/2) is resolved in the z-direction and the large A_z value (123.5 G) rules a trigonal bipyramidal coordination geometry.^{5,6}

The EPR spectra recorded in acetonitrile/ H_2O mixtures at 77 K (fig. S3), show magnetic interaction between molecules of complex. For $[Cu(dmp)_2(CH_3CN)](CIO_4)_2$ g values calculated are $g_x=2.106$, $g_y=2.134$, $g_z=2.162$, and R=1.00. For $[Cu(phen)_2(CH_3CN)](CIO_4)_2$ g values are $g_x=2.064$, $g_y=2.123$, $g_z=2.189$, and R=1.12. In both complexes, a change in the geometry and inversion of the g tensor values was observed ($g_x < g_y < g_z$). probably due to the exchange of coordinated acetonitrile by water. The g parameters are typical for a Cu(II) complexes in a predominantly axially elongated five-coordinate geometry with additional rhombic distortion ($g_z > g_y > g_x$,) and consistent with a $d_x^2-y^2$ electronic ground state. 6.8

Figure S3. EPR spectra in acetonitrile/ H_2O solution at 77 K (liquid nitrogen) of $[Cu(dmp)_2(CH_3CN)](ClO_4)_2$ **A)** and $[Cu(phen)_2(CH_3CN)](ClO_4)_2$ **C)**. Spectral simulations **B** and **D**, were made with the EasySpin program² with the following EPR parameters: Freq.= 9.11009 GHz, g = [2.106 2.134 2.162], Lw = [37.4 73.3] Gauss and Freq.= 9.11063 GHz, g = [2.064 2.123 2.189], Lw = [49.9 49.2] Gauss, respectively.

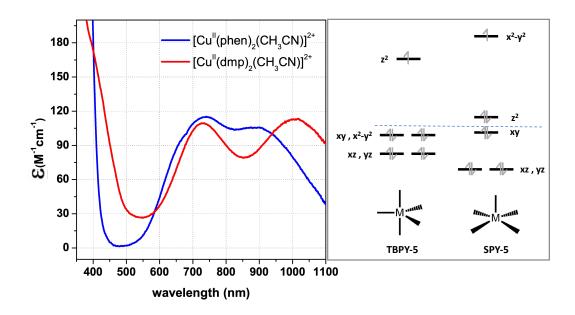
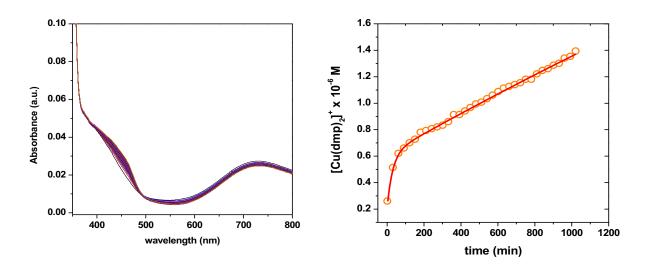
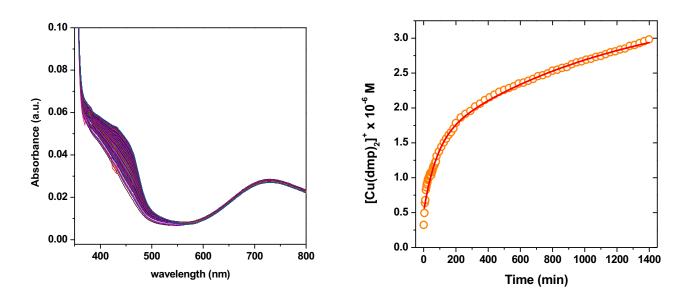


Figure S4. Left: Electronic spectra of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (red) and $[Cu(phen)_2(CH_3CN)]^{2+}$ (blue), in the range of wavelengths where d-d transitions are observed. In the red spectrum, absorptions in the range 400-500 nm are due to the presence of a small amount of $[Cu(dmp)_2]^+$ produced by spontaneous reduction of the cupric complex. Right: Splitting of d orbitals for a pentacordinated Cu^{\parallel} ion (d^9) in limit geometries of TBPY-5 and SPY-5, based on ligand field theory.

Crystallographic information for $[Cu(phen)_2(CH_3CN)](CIO_4)_2$ and $[Cu(dmp)_2](CIO_4)$ toluene.


Table S1. Comparison of selected bonds distances (Å) and angles (deg).

[Cu(phen) ₂ (CH ₃ CN)] ²⁺	Bonds	[Cu(dmp) ₂]+	Bonds
Cu1-N1	1.9808(12)	Cu(1)-N(1)#1	2.021(2)
Cu1-N2	2.0848(12)	Cu(1)-N(2)#1	2.040(3)
Cu1-N1#	1.9808(12)	Cu(1)-N(1)	2.021(2)
Cu1-N2#	2.0848(12)	Cu(1)-N(2)	2.040(3)
Cu1-N3 (CH ₃ CN)	2.0644(18)		
[Cu(phen) ₂ (CH ₃ CN)] ²⁺	Angles	[Cu(dmp) ₂] ⁺	Angles
N2-Cu1-N2#	117.20 (6)	N(1)#1-Cu(1)-N(1)	127.41(12)
N3-Cu1-N2#	121.40 (3)	N(1)#1-Cu(1)-N(2)#1	82.96(11)
N3-Cu1-N2	121.40 (3)	N(1)-Cu(1)-N(2)#1	120.40(10)
N1-Cu1-N2	81.67 (5)	N(1)#1-Cu(1)-N(2)	120.40(10)
N1-Cu1-N2#	96.52 (5)	N(1)-Cu(1)-N(2)	82.96(11)
N1#-Cu1-N2#	81.67 (5)	N(2)#1-Cu(1)-N(2)	128.70(14)
N1#-Cu1-N2	96.52 (5)		
N1#-Cu1-N3	91.73 (3)		
N1-Cu1-N3	91.73 (3)		
N1-Cu1-N1#	176.55 (6)		


 Table S2. Crystallographic information.

Compound	[Cu(phen) ₂ (CH ₃ CN)](ClO ₄) ₂	[Cu(dmp) ₂](ClO ₄) · toluene
Empirical formula	$C_{26}H_{19}Cl_2CuN_5O_8$	C ₃₅ H ₃₂ ClCuN ₄ O ₄
Formula weight	663.90 g/mol	671.63
Temperature		102(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	C2/c
Unit cell dimensions	<i>α</i> = 19.7424(10) Å, α = 90°	$a = 16.062(2) \text{ Å} \qquad \alpha = 90^{\circ}$
	<i>b</i> = 8.6861(5) Å, β = 98.024(2)°	<i>b</i> = 15.334(2) Åβ = 106.724(2)°
	c = 15.1100(8) Å, γ = 90°	c = 13.3409(19) Å, γ = 90°
Volume	2565.8(2) Å ³	3146.9(8) Å ³
Z	4	4
Density (calculated)	1.719 g/cm ³	1.418 g.cm ⁻³
Absorption coefficient (μ)	1.123 mm ⁻¹	0.825 mm ⁻¹
F(000)	1348	1392
Crystal size	0.228 x 0.323 x 0.403 mm ³	0.22 × 0.17 × 0.13 mm ³
θ range for data collection	2.84 to 30.66°	1.88 to 26.84°
Index ranges	-24 ≤h ≤ 28, -12 ≤ k≤ 12, -21 ≤ l ≤21	-20 ≤ h ≤ 17, -19 ≤ k ≤ 19, -16 ≤ l ≤ 16
Reflections collected	22906	11338
Independent reflections	3952 [R _{int} = 0.0343]	3346 [R _{int} = 0.0214]
Completeness to $\theta = 27.00^{\circ}$	99.4%	99.1 %
Absorption correction	Numerical	Empirical
Max. and min. transmission	0.7169 and 0.5691	0.9004 and 0.8394
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	3952 / 0 / 230	3346 / 0 / 226
Goodness-of-fit on F ²	1057	1048
Final R indices [I>2σ(I)]	R ₁ = 0.0326, wR ₂ = 0.0952	R ₁ = 0.0471, wR ₂ = 0.1300
R indices (all data)	R ₁ = 0.0374, wR ₂ = 0.0999	R ₁ = 0.0635, wR ₂ = 0.1437
Largest diff. peak and hole	0.360 and -0.771 e ⁻ Å ⁻³	0.707 and -0.404 e ⁻ .Å ⁻³

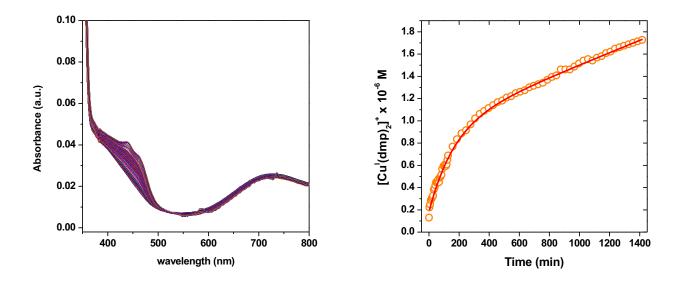
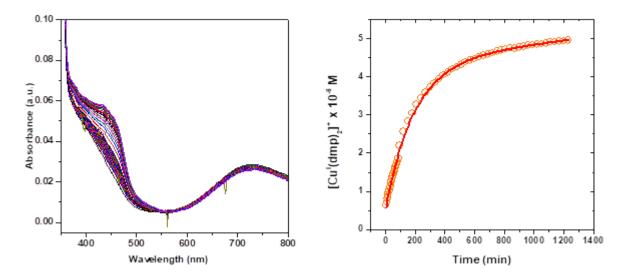
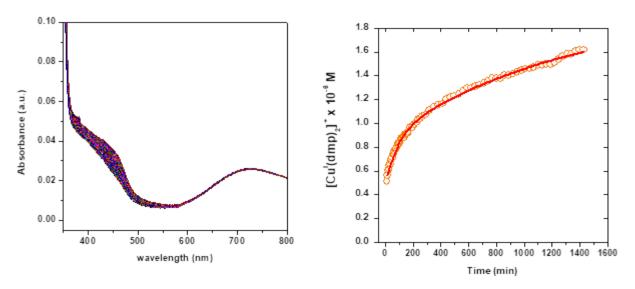
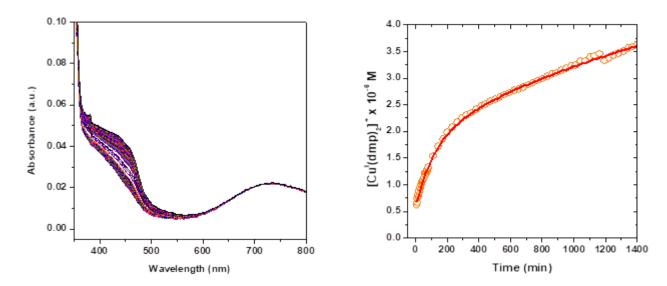
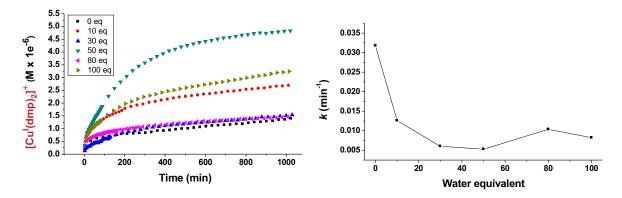

Spectral changes in acetonitrile solutions of $[Cu(dmp)_2(CH_3CN)]^{2+}$ containing variable amounts of water.

Figure S5. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+} 2.5x10^{-4} M$ in acetonitrile (no added water). Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated $\tau_1 = 30.09 \text{ min}^{-1}$, $\tau_2 = 7687.5 \text{ min}^{-1}$.

Figure S6. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+} 2.5x10^{-4}$ M in acetonitrile + 10 equiv H₂O. Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated τ_1 = 79.57 min⁻¹, τ_2 = 1150.2 min⁻¹.

Figure S7. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+} 2.5x10^{-4}$ M in acetonitrile + 30 equiv H_2O . Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated τ_1 = 165.38 min⁻¹, τ_2 = 3.00x10⁷ min⁻¹.


Figure S8. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+} 2.5x10^{-4}$ M in acetonitrile + 50 equiv H_2O . Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated τ_1 = 189.8 min⁻¹, τ_2 = 3.18 x10⁴ min⁻¹.

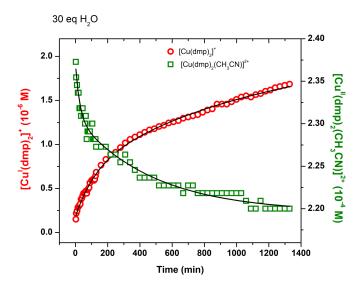

Figure S9. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+} 2.5x10^{-4}$ M in acetonitrile + 80 equiv H₂O. Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated τ_1 = 98.38 min⁻¹, τ_2 = 1333 min⁻¹.

Figure S10. Spectral variation of $[Cu(dmp)_2(CH_3CN)]^{2+}$ 2.5x10⁻⁴ M in acetonitrile + 100 equiv H₂O. Kinetic profile of formation of $[Cu(dmp)_2]^+$ and biexponential decay fit. Calculated τ_1 = 121 min⁻¹, τ_2 = 2163.7 min⁻¹.

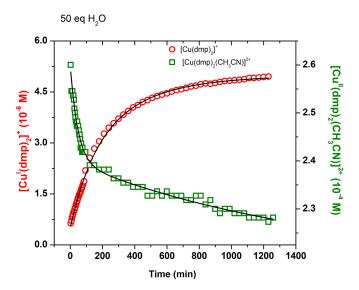

Figure S11. Left: Kinetic profile of formation of $[Cu(dmp)_2]^+$ at different amount of water, followed at A_{obs} =456 nm. Right: Rate constants of formation of $[Cu(dmp)_2]^+$ as a function of the equivalents of water.

Figure S12. Kinetic profiles for the formation of $[Cu(dmp)_2]^+$ (red circles, λ_{obs} =456 nm), and consumption of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (green squares, λ_{obs} =727 nm), in an acetonitrile solution 2.5x10⁻⁴ M of $[Cu(dmp)_2(CH_3CN)]^{2+}$ after addition of 30 eq of water. A biexponential equation was used to fit both profiles (black curves).

Table S3. Observed rate constants calculated by biexponential fit of the formation of $[Cu(dmp)_2]^+$ and decay of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (figure 1). Variation in the concentration of each species was calculated at 1200 min of reaction, being (+) formation and (-) decrease from the initial concentration of complex.

+ 30 eq H ₂ O	Kobs 1	K _{obs} 2	Variation in the complex concentration after 1200 min
[Cu(dmp) ₂] ⁺	8.1x10 ⁻³	8.7x10 ⁻⁴	(+) 1.6x10 ⁻⁶ M
[Cu(dmp) ₂ (CH ₃ CN)] ²⁺	3.9x10 ⁻²	2.1x10 ⁻³	(-) 1.7x10 ⁻⁵ M

Figure S13. Kinetic profiles for the formation of $[Cu(dmp)_2]^+$ (red circles, λ_{obs} =456 nm), and consumption of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (green squares, λ_{obs} =727 nm), in an acetonitrile solution 2.5x10⁻⁴ M of $[Cu(dmp)_2(CH_3CN)]^{2+}$ after addition of 50 eq of water. A biexponential equation was used to fit both profiles (black curves).

Table S4. Observed rate constants calculated by biexponential fit of the formation of $[Cu(dmp)_2]^+$ and decay of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (figure 1). Variation in the concentration of each species was calculated at 1200 min of reaction, being (+) formation and (-) decrease from the initial concentration of complex.

+ 50 eq H ₂ O	K _{obs 1}	K _{obs 2}	Variation in the complex concentration after 1200 min
[Cu(dmp) ₂] ⁺	6.8x10 ⁻³	2.7x10 ⁻³	(+) 4.9x10 ⁻⁶ M
[Cu(dmp) ₂ (CH ₃ CN)] ²⁺	2.2x10 ⁻²	6.6x10 ⁻⁴	(-) 3.2x10 ⁻⁵ M

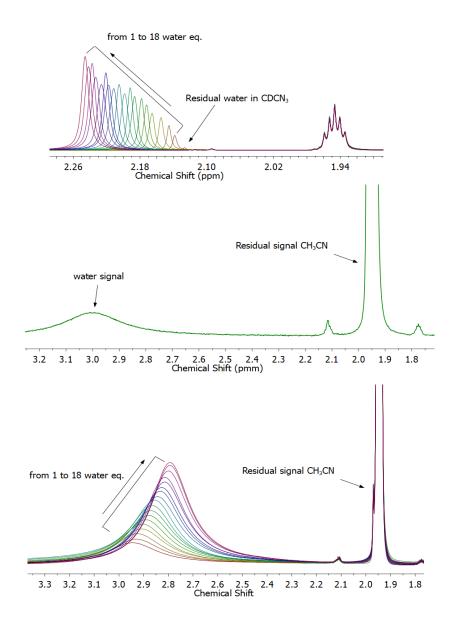
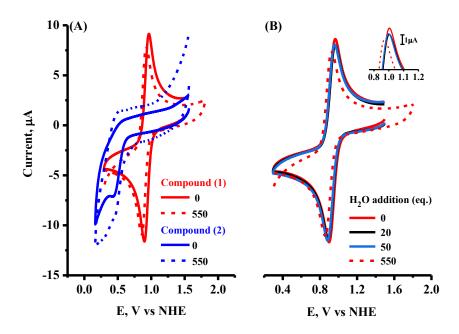



Figure S14. Above: 1 H-NMR spectra of CD₃CN with additions of water (without complex). Center: 1 H-NMR spectra of an CD₃CN solution of [Cu(dmp)₂(CH₃CN)](ClO₄)₂. Below: 1 H-NMR spectra of an CD₃CN solution of [Cu(dmp)₂(CH₃CN)](ClO₄)₂ with additions of equivalent amounts of water.

Figure S15. Cyclic voltammograms (CVs) at 100 mV s⁻¹ in acetonitrile containing 0.1 mol L⁻¹ TBAP and 0.001 mol L⁻¹ solutions of $[Cu(dmp)_2(CH_3CN)]^{2+}$ (compound 1) and $[Cu(phen)_2(CH_3CN)]^{2+}$ (compound 2). Panel (A): CVs obtained before (solid lines) and after (dashed lines) addition of 550 equivalents of water. Panel (B): CVs during water addition in the solution containing $[Cu(dmp)_2(CH_3CN)]^{2+}$ after addition of different amount of water, as indicated. Inset: zoom in to show the potential shifts of the oxidative peaks during water addition.

Table S5. Shape measurements for the Cu-N₄ core in $[Cu(dmp)_2(CH_3CN)]^{2+}$ and $[Cu(phen)_2(CH_3CN)]^{2+}$ with no coordinated CH_3CN , and $[Cu(dmp)_2]^+$.

Compound (CCDC deposition number)	SP-4	vTBPY-4	T-4	SS-4	Reference
[Cu(dmp) ₂ (CH ₃ CN)] ²⁺	16.755	8.239	9.408	2.784	this work
[Cu(dmp) ₂ (CH ₃ CN)] ²⁺	16.699	8.390	9.239	2.654	1
[Cu(phen) ₂ (CH ₃ CN)] ²⁺	9.277	14.124	13.838	3.212	this work
[Cu(dmp) ₂] ⁺	22.356	8.632	5.474	8.278	this work
[Cu(dmp) ₂]+(278537)	21.923	8.254	5.787	8.494	9
[Cu(dmp) ₂]+(278538)	25.156	8.451	5.487	9.511	9
[Cu(dmp) ₂] ⁺ (228941)	25.227	7.347	5.343	8.493	10
[Cu(dmp) ₂] ⁺ (228942)	21.962	7.580	6.176	7.019	10
[Cu(dmp) ₂] ⁺ (228943)	23.022	8.041	5.779	8.033	10
[Cu(dmp) ₂] ⁺ (228944)	21.119	8.215	6.201	7.960	10
[Cu(dmp) ₂] ⁺ (228945)	20.344	7.855	6.650	7.587	10
[Cu(dmp) ₂] ⁺ (228947)	20.436	8.172	6.041	7.422	10
[Cu(dmp) ₂] ⁺ (228948)	24.907	8.041	5.300	8.838	10
[Cu(dmp) ₂] ⁺ (228949)	24.609	8.050	5.420	9.113	10
[Cu(dmp) ₂] ⁺ (228950a)	21.935	8.010	6.124	7.361	10
[Cu(dmp) ₂] ⁺ (228950b)	25.875	7.429	5.824	7.108	10
[Cu(dmp) ₂] ⁺ (228951)	17.856	9.141	6.527	7.075	10

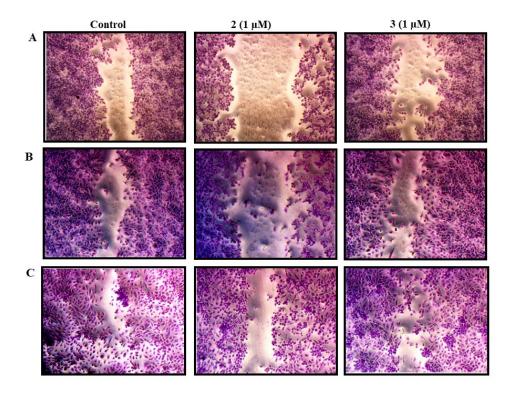


Figure S16. Wound healing assay. (A) MG-63, (B) A549 and (C) MDA-MB-231.

References

- 1 V. Leandri, Q. Daniel, H. Chen, L. Sun, J. M. Gardner and L. Kloo, *Inorg. Chem.* 2018, 57, 4556–4562.
- 2 S. Stoll and A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.
- 3 E. Garribba and G. Micera, J. Chem. Educ. 2006, 83, 1229–1232.
- 4 B. J. Hathaway and A. G. Tomlinson, *Coord. Chem. Rev.* 1970, 5, 1–43.
- 5 Y. Yao, M. W. Perkovic, D. P. Rillema and C. Woods, *Inorg. Chem.* 1992, 31, 3956–3962.
- 6 M. Pitié, C. Boldron, H. Gornitzka, C. Hemmert, B. Donnadieu and B. Meunier, *Eur. J. Inorg. Chem.* 2003, 528–540.
- A. I. B. Romo, D. S. Abreu, T. de F. Paulo, M. S. P. Carepo, E. H. S. Sousa, L. Lemus, C. Aliaga, A. A. Batista, O. R. Nascimento, H. D. Abruña and I. C. N. Diógenes, *Chem. A Eur. J.* 2016, 22, 10081–10089.
- 8 A. I. B. Romo, V. S. Dibo, D. S. Abreu, M. S. P. Carepo, A. C. Neira, I. Castillo, L. Lemus, O. R. Nascimiento, P. V. Bernhardt, E. H. S. Sousa and I. C. N. Diógenes, *Dalton Trans*. 2019, 48, 14128–14137.
- 9 G. King, M. Gembicky and P. Coppens, *Acta Crystallogr. Sect. C Cryst. Struct. Commun.* 2005, 61, 329–332.
- 10 A. Y. Kovalevsky, M. Gembicky, I. V. Novozhilova and P. Coppens, *Inorg. Chem.* 2003, 42, 8794–8802.