Supporting Information

Application of 4-Pyridylselenolate Palladium Macrocycles in Suzuki

Couplings

P. A. Mane,^[a] A. K. Pathak,^[a,b] N. Bhuvanesh^[c] and S. Dey*^[a,b]

^[a] Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India.

^[b] Homi Bhabha National Institute, Training School Complex, Mumbai-400094, India.

^[c] Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA.

Email: dsandip@barc.gov.in (S. Dey); Tel: +91-22-2559-2589

Supporting Information

Sr No	Contents	Page
		no.
1	General Procedures	2
2	Crystallography	3
3	Syntheses and spectroscopy of complexes	4-10
4	Experimental of Suzuki reaction and DFT calculation	10-11
5	References	11-12
6	Crystallographic and structure refinement data	13-14
7	Selected interatomic distances [Å] and angles [°]	15-17
8	Energy parameters and composition of frontier orbitals of complexes	18
9	Calculated and experimental peaks of the fragmented ions of 6 and 7	19-20
10	Optimization of reaction parameters of Suzuki reaction	21-22
11	Comparison of catalytic activity of Pd complexes	23
12	¹ H, ³¹ P and ¹³ C NMR spectra of compounds 2-3	24-28

Table of Contents

13	$^{31}P{^{1}H}$ NMR spectra of the reaction of Pd(dppf)(OTf) ₂ and Na(4-Sepy)	29
14	ORTEP diagram of complexes Pd(dppf)Cl(4-Sepy) and Pd(dppf)Cl ₂	30
15	¹ H, ³¹ P and ¹³ C NMR spectra of compounds 4-5	31-34
16	ORTEP diagram of [Pd(dppf)(4-Sepy)]2(BPh4)2 (5)	35
17	¹ H, ³¹ P and ¹³ C NMR spectra of compounds 6-7 in CD ₂ Cl ₂	36-43
18	¹ H DOSY NMR spectrum of 7	44
19	¹ H and ³¹ P NMR spectra of 7 at different concentration and temperature	45-47
20	¹ H and ³¹ P NMR spectra of 7 in CDCl ₃	48-49
21	Optimized minimum energy structures calculated applying DFT method	50
22	¹ H, ³¹ P and ¹⁹ F NMR spectra of 8	51-53
23	³¹ P NMR spectra of mixture of Pd(dppf)(OTf) ₂ and 2 in NMR tube	54
24	¹ H and ³¹ P NMR spectra of 9	55-56
25	ORTEP diagram of complex 9	57
26	¹ H, ³¹ P and ¹³ C NMR spectra of complex 10	58-60
27	ESI mass-spectrum of complex 6	61
28	ORTEP diagram of [Pd(dppe)(4-Sepy)] ₂ (OTf) ₂ (6a)	62
29	UV-vis spectra of complex 6	63
30	Plot of time vs yield	64
31	PXRD Pattern of complex 7	65
32	EDAX spectrum of the compound after catalysis reaction of complex 7.	66
33	¹ H NMR spectra of the coupling products of Suzuki reactions	67-76

General Procedures: Solvents were dried and distilled prior to use by standard methods. All reactions were carried out in Schlenk flasks under a nitrogen atmosphere. 4-Mercaptopyridine was used as purchased from commercial sources without further purification. Pd(dppe)Cl₂, Pd(dppf)Cl₂¹, Pd(Xantphos)Cl₂², Pd(Xantphos)(OTf)₂³, Pd(dppf)(OTf)₂⁴, Pd(dppe)(OTf)₂⁵, Pd(dppe)(4-Sepy)₂⁶ and 4,4'-py₂Se₂⁷ were prepared according to literature method. Melting points were determined in capillary tubes and are uncorrected. Elemental analysis for C, H, N and S were carried out on an Carlo-Erba EA-1110 CHNS Analyser. ¹H NMR spectra were recorded on a Bruker and Varian NMR spectrometers operating at 200.13, 300.13, 500.13, 600.13 and 800.13 MHz, chemical shifts are relative to internal acetone- d_6 , dichloromethane- d_2 and chloroform- d_1 peak (δ 2.05, δ 5.32 and δ 7.26). The chemical shifts (δ) were reported in parts per million (ppm). The coupling constants (J) are quoted in Hertz (Hz). Proton splitting patterns are described as s (singlet), d (doublet), t (triplet), and m (multiplet). For ³¹P{¹H} NMR spectra were recorded on a Bruker NMR spectrometer operating at 121.46 MHz, 243.17 MHz. ¹³C{¹H} NMR spectra were recorded on a Bruker NMR spectrometer operating at 201.16 MHz. ¹⁹F{¹H} NMR spectra were recorded on a Bruker NMR spectrometer operating at 282.38 MHz. Absorption spectra were recorded on a Jasco V–650 spectrophotometer. Mass spectra were recorded on a maXis Impact (Bruker) mass spectrometer.

Crystallography

The crystallographic data together with the data collection and refinement details are given in Table **S1** and **S2**. Crystals of **4**, **6a**, **7a**, **7b** and **9** were grown from solvent mixtures of acetone-hexane, acetonitrile-hexane, dichloromethane-hexane, acetone-hexane and dichloromethane-hexane at room temperature. Crystals of complex **10** was grown from solvent mixtures of acetone-hexane -5 °C. Single crystal X-ray diffraction data of complex **4** was collected on A BRUKER Venture X-ray diffractometer fitted with Cu K α radiation at 100K. Single crystal X-ray diffraction data of complex **3** diffractometer fitted with Mo K α radiation at 110K. Single crystal X-ray diffraction data of complex **7** was collected on A BRUKER Quest X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffraction data of complex **7** was collected on A BRUKER Quest X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffractometer fitted with Mo K α radiation at 110K. The single crystal X-ray diffractometer fitted with Cu K α radiation at 110K. For **10**, although the formula is given as C₄₄H₃₆NOP₂PdS·1.47(CF₃O₃S)·C₃H₆O·[+MASKed solvent], for charge balance it could be written as C₄₄H₃₆NOP₂PdS·(CF₃O₃S)·0.47(CF₃O₃SH)·C₃H₆O·[+MASKed solvent].

We made no efforts to model partially occupied (0.47 H-atoms) disordered over different oxygen atoms in (CF₃O₃SH).

Single crystal X-ray diffraction data of complex **9** was collected on XtaLAB Synergy, Dualflex, HyPix four-circle diffractometer fitted with Cu K α radiation at 100K. For above compounds the integrated intensity information for each reflection was obtained by reduction of the data frames with the program APEX3.⁸ SADABS⁹ was employed to correct the data for absorption effects. A solution was obtained readily using XT/XS in APEX3.^{8,10-12} Hydrogen atoms were placed in idealized positions and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with anisotropic thermal parameters. The structure was refined (weighted least squares refinement on F^2) to convergence.¹⁰⁻¹³ Olex2 was employed for the final data presentation and structure plots.¹³ SCALE3 ABSPACK^{14,15} was employed to correct the data for absorption effects of complex **9**. The structure was refined (full-matrix least-squares methods against F^2) to convergence.¹¹⁻¹² Final Cif was employed for the final data presentation and structure plots.¹⁶

Syntheses and spectroscopy of complexes

$Pd(dppf)(4-Sepy)_2(2)$

An acetone solution of (10 mL) of Pd(dppf)Cl₂ (52.7 mg, 0.072 mmol) was added to a freshly prepared methanolic solution of (10 mL) of Na(4-Sepy) (prepared from 4,4'-py₂Se₂ (22.7 mg, 0.072 mmol) and NaBH₄ (5.5 mg, 0.145 mmol)) with stirring which continued for 4 h. The solvents were evaporated in vacuuo, the violet residue was washed with diethyl ether and extracted with dichloromethane (3 × 5 mL). A few drops of hexane were added to yield violet-colored crystals of **2** (60.8 mg, 0.062 mmol, 87%; mp 216 °C). Anal. Calcd for **2** C₄₄H₃₆P₂PdSe₂FeN₂: C, 54.21; H, 3.72; N, 2.87; Found: C, 53.85; H, 3.73; N, 3.30%. ¹H NMR (600 MHz, CDCl₃) δ : 4.18 (s, 4H, H_β-ferr), 4.36 (s, 4H, H_α-ferr), 7.16 (d, ³*J*_{H,H} = 5.0 Hz, 4H,

H_β-Py), 7.35 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, *m*-H of Ph), 7.45 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 4H, *p*-H of Ph), 7.74-7.79 (m, 8H, *o*-H of Ph), 7.85 (d, ${}^{3}J_{H,H} = 5.0$ Hz, 4H, H_α-Py). ${}^{31}P\{{}^{1}H\}$ NMR (121 MHz, CDCl₃) δ: 21.3 (s, ${}^{2}J_{Se,P} = 52.2$ Hz) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 201 MHz) δ: 73.3 (s, β-C of ferr); 76.0 (s, α-C of ferr); 75.9 (d, ${}^{1}J_{P-C} = 50.3$ Hz, *ipso*-C of ferr); 128.2 (s, *m*-C of Ph); 130.6 (s, β-C of Py); 131.2 (s, *p*-C of Ph); 132.1 (d, ${}^{1}J_{P-C} = 48.3$ Hz, *ipso*-C of Ph); 134.7 (s, *o*-C of Ph); 146.9 (s, α-C of Py); 151.2 (s, *ipso*-C of Py).

Pd(Xantphos)(4-Sepy)₂(3)

Prepared in similar manner to that for **2**, using Pd(Xantphos)Cl₂ (52.9 mg, 0.070 mmol) and Na(4-Sepy) (prepared from 4,4'-py₂Se₂ (22.0 mg, 0.070 mmol) and NaBH₄ (5.3 mg, 0.140 mmol)) and recrystallized from acetone-hexane mixture to yield brown powder of **3** (52.2 mg, 0.052 mmol, 75%; mp 148 °C) Anal. Calcd for **3** C₄₉H₄₀N₂OP₂PdSe₂: C, 58.90; H, 4.04; N, 2.80; Found: C, 58.14; H, 3.81; N, 2.59%. ¹H NMR (300 MHz, CDCl₃) δ : 1.75 (s, 6H, CH₃), 7.10-7.23 (m, 14H, H_{\beta}-Py + CHCHCH + *m*-H of Ph), 7.23-7.29 (m, 6H, *p*-H of Ph + CPCHCH), 7.37-7.50 (m, 8H, *o*-H of Ph), 7.57-7.63 (m, 2H, CHCHCC), 7.80 (d, ³J_{H,H} = 5.1 Hz, 4H, H_{\alpha}-Py). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ : 10.6 (s) ppm.

[Pd₃(Xantphos)₂(4-Sepy)₄](OTf)₂ (4)

Prepared in similar manner to that for **6**, using Pd(Xantphos)(OTf)₂ (68.1 mg, 0.069 mmol) and **3** (69.2 mg, 0.069 mmol) and recrystallized from acetone-hexane mixture to yield red colored crystals of **4** (75.2 mg, 0.031 mmol, 45%; mp 184 °C). Anal. Calcd for **4** C₁₀₀H₈₀F₆N₄O₈P₄Pd₃S₂Se₄: C, 49.99; H, 3.36; N, 2.33; Found: C, 50.23; H, 3.52; N, 2.53%. ¹H NMR (300 MHz, CDCl₃) δ: 1.81 (s, CH₃), 6.85 (d, J = 6.0 Hz, H_β-Py), 6.90-6.98 (m, CH*CH*CH), 6.99-7.13 (m, *m*-H of Ph + CH*CH*CH), 7.14-7.29 (m, *p*-H of Ph + H_β-Py + CP*CH*CH), 7.30-7.52 (m, *o*-H of Ph + H_α-py + CP*CH*CH), 7.56 (d, J = 6.0 Hz, CH*CH*CC). 7.63 (d, J = 6.0 Hz, H_α-Py), 7.87 (d, J = 6.0 Hz, CH*CH*CC). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ: 22.8 (s) ppm.

[Pd2(dppf)2(4-Sepy)2](BPh4)2 (5)

A dichloromethane solution of (10 mL) of Pd(dppf)Cl₂ (41.1 mg, 0.056 mmol) was added to a methanolic solution of (10 mL) of Na(4-Sepy) (prepared from 4,4'-py₂Se₂ (8.8 mg, 0.028 mmol) and NaBH₄ (2.1 mg, 0.055 mmol)) with stirring which continued for 2 h. Then a methanolic solution of (5 mL) of NaBPh₄ (19.2 mg, 0.056 mmol) was added, the stirring was further continued for 4 h. The solvents were evaporated in vacuuo; the red residue was washed with diethyl ether and extracted with dichloromethane $(3 \times 5 \text{ mL})$. A few drops of hexane were added to yield red crystal of 5 (46.4 mg, 0.020 mmol, 73%; mp 180 °C). Anal. Calcd for 5 C₁₂₆H₁₀₄P₄Pd₂Se₂Fe₂B₂N₂: C, 66.55; H, 4.61; N, 1.23; Found: C, 65.98; H, 4.60; N, 1.21%. ¹H NMR (500 MHz, CDCl₃) δ : 3.87 (s, 4H, H_{\u03c9}-ferr), 4.34 (s, 4H, H_{\u03c9}-ferr), 4.62 (s, 4H, H_{\u03c9}-ferr), 4.73 (s, 4H, H_a-ferr), 6.59 (d, ${}^{3}J_{H,H} = 5.6$ Hz, 4H, H_b-Py), 6.92 (t, ${}^{3}J_{H,H} = 7.1$ Hz, 12H, p-H of BPh; the peak correspond to the 4H of H_a-Py merged in the base), 7.08 (t, ${}^{3}J_{H,H} = 7.1$ Hz, 24H, *m*-H of BPh; the peak correspond to the 8H of *m*-H of PPh merged in the base), 7.26-7.32 (m, 12H, *o*-H of PPh + *p*-H of PPh), 7.50 (br m, 16H, *o*-H of BPh), 7.53-7.56 (br t, ${}^{3}J_{H,H} = 7.3$ Hz, 8H, *m*-H of PPh), 7.64 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 4H, *p*-H of PPh), 7.89 (dd, ${}^{3}J_{P,H} = 12.5$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, o-H of Ph). ³¹P{¹H} NMR (243 MHz, CDCl₃) δ: 30.6 (s, P *trans* to Se), 34.2 (s, P *trans* to N) ppm.

$[Pd(dppe)(4-Sepy)]_n(OTf)_n (6: n = 2, 6a; n = 4, 6b)$

A dichloromethane solution of (8 mL) of Pd(dppe)(OTf)₂ (59.1 mg, 0.074 mmol) was added to a dichoromethane solution of (8 mL) of Pd(dppe)(4-Sepy)₂ (1)²³ (60.1 mg, 0.073 mmol) with stirring which continued for 4 h. The solvent was evaporated in vacuuo; the yellow residue was washed with diethyl ether and extracted with acetonitrile (3 × 5 mL). A few drops of hexane were added to yield yellow crystals of **6** (112.8 mg, 0.070 mmol, 95%; mp > 230 °C). Anal. Calcd for **6** C₆₄H₅₆F₆N₂O₆P₄Pd₂S₂Se₂: C, 47.39; H, 3.48; N, 1.73; Found: C, 47.98; H, 3.46; N, 1.75%. UV/vis (acetonitrile): λ_{max} (ε in M⁻¹ cm⁻¹) 305 (9651), 363 (8043), 384 (sh, 6638), 430 (1463) nm. ¹H NMR (600 MHz, CD₂Cl₂) δ: 2.45-2.58 (m, 4H, CH₂), 2.61-2.74 (m, 4H, CH₂), 7.18 (d, ${}^{3}J_{H,H} = 6.0$ Hz, 4H, H_{β}-Py, dimer), 7.38 (br m, 4H, H_{α}-Py), 7.47-7.55 (m, 16H, *m*-H of Ph + o-H of Ph), 7.58-7.63 (m, 4H, p-H of Ph), 7.67 (dt, ${}^{3}J_{H,H} = 7.5$ Hz, ${}^{4}J_{P,H} = 2.5$ Hz, 8H, m-H of Ph), 7.71 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 4H, *p*-H of Ph), 7.86 (dd, ${}^{3}J_{P,H} = 12.6$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, o-H of Ph). A peak at δ 7.03 (d, ${}^{3}J_{H,H} = 6.0$ Hz, 4H, H_b-Py) is assigned to the tetramer with the ratio 9:91 with the dimer. All other signals for dimer and tetramer are overlapped. ${}^{31}P{}^{1}H{}$ NMR (243 MHz, CD₂Cl₂) δ: dimer, 56.8 (s, P trans to Se), 62.7 (s, P trans to N); tetramer, 55.1 (s, P *trans* to Se), 61.0 (s, P *trans* to N) ppm, in 93:7 ratio. ¹³C{¹H} NMR (CD₂Cl₂, 201 MHz) δ : 129.9 (d, ${}^{3}J_{C,P} = 10.1$ Hz, m-C of Ph); 130.5 (d, ${}^{2}J_{C,P} = 12.1$ Hz, o-C of Ph); 133.2 (d, ${}^{3}J_{C,P} = 10.1$ Hz, *m*-C of Ph); 133.4 (s, *p*-C of Ph); 133.6 (s, β -C of Py); 133.8 (m, two ipso-C of Ph are merged); 134.3 (d, ${}^{2}J_{C,P}$ = 12.1 Hz, o-C of Ph); 137.2 (s, p-C of Ph); 149.5 (s, α -C of Py), 152.0 (s, ipso-C of Py); signals corresponding to PCH₂ group and triflate anion were not resolved probably due to its low intensity. ESI-MS (ion, relative intensity): m/z 1472.9 ([6a – $OTf]^+$, 52%), 1347.0 ([(6a + CH₃CN) - 2Sepy]^+, 30%), 1318.9 ([6a - (2C₆H₅ + OTf)]^+, 63%), 1218.0 ([(6a + 3CH₃CN + 2H) - (3C₆H₅ + 2OTf)]⁺, 100%), 1188.9 ([(6a + Na) - (Sepy + 2OTf]⁺, 59%), 1088.1 ([(6a + 2CH₃CN + H) – (2Sepy + 2C₆H₅ + OTf)]⁺, 28%).

$[Pd(dppf)(4-Sepy)]_n(OTf)_n$ (7: n = 2, 7a; n = 4, 7b)

Prepared in similar manner to that for **6**, using Pd(dppf)(OTf)₂ (85.1 mg, 0.088 mmol) and **2** (86.5 mg, 0.088 mmol) and recrystallized from dichloromethane-hexane mixture to get red powder of **7** (152.7 mg, 0.079 mmol, 89%; mp > 230 °C). Anal. Calcd for **7** C₈₀H₆₄F₆Fe₂N₂O₆P₄Pd₂S₂Se₂: C, 49.69; H, 3.34; N, 1.45; Found: C, 48.95; H, 3.17; N, 1.40%. UV/vis (acetone): λ_{max} (ε in M⁻¹ cm⁻¹) 328 (sh, 11336), 346 (13722), 368 (sh, 11887), 488 (2208) nm. ¹H NMR (CD₂Cl₂, 600 MHz) δ : dimer, 3.81; tetramer 3.85 (s, 4H, 85:15, H_β-ferr), tetramer, 4.33; dimer, 4.34 (s, 4H, H_β-ferr), tetramer, 4.66; dimer, 4.72 (s, 4H, 16:84, H_α-ferr); tetramer, 4.83; dimer, 4.93 (s, 4H, 15:85, H_α-ferr), tetramer, 6.86; dimer, 7.09 (d, ³*J*_{H,H} = 6 Hz,

4H, H_β-Py), 7.22 (t, ${}^{3}J_{\text{H,H}} = 6$ Hz, 8H, *m*-H of Ph), 7.37 (t, ${}^{3}J_{\text{H,H}} = 6$ Hz, 4H, *p*-H of Ph), 7.49 (m, 16H, *o*-H of Ph + *m*-H of Ph), 7.69 (br s, 12H, *p*-H of Ph + H_a-Py), tetramer, 7.79 (br s, 4H, H_a-Py), 8.02 (m, 8H, *o*-H of Ph). ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, 243 MHz) δ : Tetramer, 25.2 (s), 28.9 (s); Dimer 27.6 (s), 29.6 (s) in 15:85 ratio. ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, 201 MHz) δ : 72.5 (d, ${}^{1}J_{\text{P-C}} = 54.3$ Hz, *ipso*-C of ferr, D); 74.2 (d, ${}^{2}J_{\text{P,C}} = 8.0$ Hz, *a*-C of ferr, D); 74.3 (d, ${}^{2}J_{\text{P,C}} = 8.0$ Hz, *a*-C of ferr, T); 75.5, 75.6 (each d, ${}^{2}J_{\text{P,C}} = 8.0$ Hz, *β*-C of ferr, T); 75.8 (d, ${}^{3}J_{\text{P,C}} = 8.0$ Hz, *β*-C of ferr, D); 77.5 (d, ${}^{2}J_{\text{P,C}} = 10.1$ Hz, *a*-C of ferr, T); 77.9 (d, ${}^{2}J_{\text{P,C}} = 10.1$ Hz, *a*-C of ferr, D); 128.9 (s); 129.2 (d, ${}^{3}J_{\text{P,C}} = 10.1$ Hz, *m*-C of Ph, D); 129.5 (d, ${}^{2}J_{\text{P,C}} = 10.1$ Hz, *a*-C of Ph, D); 129.3 (s), 129.8 (d, *J* = 10.1 Hz), 130.2 (s), 130.5 (s), 130.6 (s) (*o*-/*m*-C of Ph, T); 132.8 (s, *β*-C of Py, D); 133.9 (d, ${}^{3}J_{\text{P,C}} = 12.1$ Hz, *m*-C of Ph, D); 132.6 (s, *β*-C of Py, T); 132.8 (s, *β*-C of Py, D); 133.9 (d, ${}^{3}J_{\text{P,C}} = 12.1$ Hz, *m*-C of Ph, D); 134.4 (d, ${}^{2}J_{\text{P,C}} = 8.1$ Hz, *o*-C of Ph, T); 135.4 (d, ${}^{2}J_{\text{P,C}} = 10.1$ Hz, *o*-C of Ph, D); 137.3 (s, *p*-C of Ph, D); 148.9, 149.4 (each s, *a*-C of Py, D, T); 150.9 (s, *ipso*-C of Py, D).

ESI-MS (ion, relative intensity): $m/z 2373.6 ([(7b + CH_3CN + H) - (5C_6H_5 + 4OTf + dppf)]^+, 1\%), 2332.5 ([(7b + H) - (5C_6H_5 + 4OTf + dppf)]^+, 3\%), 2182.5 ([(7b + 2CH_3CN) - (7C_6H_5 + 4OTf + dppf + py)]^+, 5\%), 1912.8 ([(Pd_3(dppf)_3(Sepy)_2 + 2H) - 5C_6H_5]^+, 2\%), 1791.7 ([(7a + 4CH_3CN + 2H) - 4C_6H_5]^+, 95\%), 1784.9 ([7a - OTf]^+, 100\%), 1761.9 ([(Pd_2(dppf)_2(Sepy)_2Se + 3CH_3CN + H) - C_6H_5]^+, 53\%), 1757.9 ([(Pd_2(dppf)_2(Sepy)_2Se + CH_3CN + H)]^+, 61\%), 1731.7 ([(7a + 6CH_3CN) - (5C_6H_5 + C_5H_4)]^+, 84\%), 1557.9 ([7a - (py + 2OTf)]^+, 34\%).$

[Pd₂(dppf)₂(4-Sepy)₂](BF₄)₂ (8)

A dichloromethane solution of (10 mL) of Pd(dppf)Cl₂ (59.2 mg, 0.081 mmol) was added to a methanolic solution of (10 mL) of Na(4-Sepy) (prepared from 4,4'-py₂Se₂ (12.7 mg, 0.040 mmol) and NaBH₄ (3.1 mg, 0.082 mmol)) with stirring which continued for 4 h. Then an acetone solution of (5 mL) of AgBF₄ (16.0 mg, 0.081 mmol) was added, the stirring was further continued for overnight. Next day the solvents were evaporated in vacuuo; the red

residue was washed with diethyl ether and extracted with dichloromethane (3 × 5 mL). A few drops of diethyl ether were added to yield red solid of **8** (48.6 mg, 0.027 mmol, 66%; mp 156 °C). Anal. Calcd for **8** C₇₈H₆₄B₂F₈P₄Pd₂Se₂Fe₂N₂: C, 51.78; H, 3.57; N, 1.55; Found: C, 51.23; H, 3.73; N, 1.85%. ¹H NMR (300 MHz, CDCl₃) δ : 4.19 (br s, 8H, H_β-ferr), 4.41 (s, 8H, H_α-ferr), 7.40 (br s, 16H, *m*-H of Ph), 7.49 (br s, 8H, *p*-H of Ph), 7.89 (br s, 16H, *o*-H of Ph), the peaks correspond to the 4H of H_β-py and H_α-py each merged in the base. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ : 34.8 (s) ppm. ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ : -152.07 (br, ¹⁰BF⁻), -152.12 (br s, ¹¹BF⁻) ppm.

[Pd(dppe)(4-Spy)]₂(OTf)₂(9)

A dichloromethane solution of (5 mL) of Pd(dppe)(OTf)₂ (54.3 mg, 0.067 mmol) was added to a freshly prepared methanolic solution of (5 mL) of 4-pySH (7.5 mg, 0.067 mmol) with stirring which continued for 4 h. The solvents were evaporated in vacuuo, the yellow residue was washed diethyl ether and extracted in acetone (3 × 5 mL). A few drops of hexane were added to get yellow powder which was recrystallized from dichloromethane-hexane mixture to yield yellow colored crystals of **9** (42.5 mg, 0.023 mmol, 68%; mp 146 °C). Anal. Calcd for **9**·(CF₃SO₃H)₂·(H₂O)₂, C₆₆H₆₂F₁₂N₂O₁₄P₄Pd₂S₆: C, 42.52; H, 3.35; N, 1.50; Found: C, 42.13; H, 2.89; N, 1.52%. ¹H NMR (300 MHz, CDCl₃) δ : 2.63 (d, ²*J*_{P,H} = 22.9 Hz, 8H, CH₂), 7.36-7.76 (m, 48H, Ph + py). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ : 60.9 (s) ppm.

[Pd(Xantphos)(4-Spy)](OTf) (10)

Prepared in similar manner to that for **9**, using Pd(Xantphos)(OTf)₂ (162.3 mg, 0.165 mmol) and 4-pySH (18.3 mg, 0.165 mmol) and recrystallized from acetone-hexane mixture to yield red colored crystals of the title compound (159.6 mg, 0.146 mmol, 88%; mp 208 °C). Anal. Calcd for **10**·CF₃SO₃H, C₄₆H₃₇F₆NO₇P₂PdS₃: C, 50.49; H, 3.41; N, 1.28; Found: C, 50.37; H, 3.58; N, 1.27%. UV/vis (acetone): λ_{max} (ϵ in M⁻¹ cm⁻¹) 328 (sh, 21495), 347 (27308), 424 (sh, 3474), 479 (2397) nm. ¹H NMR (600 MHz, acetone-*d*₆) δ : 1.87 (s, 6H, CH₃), 7.50 (t, ³*J*_{H,H} =

7.5 Hz, 8H, *m*-H of Ph), 7.56-7.63 (m, 6H, *p*-H of Ph + H_β-py), 7.72-7.81 (m, 6H, H_α-py + CHC*H*CH + CPC*H*CH), 7.84 (dd, ${}^{3}J_{P,H} = 13.1$ Hz, ${}^{3}J_{H,H} = 6.3$ Hz, 8H, *o*-H of Ph), 8.14 (d, 7.8 Hz, 2H, CHC*H*CC), ${}^{31}P{}^{1}H{}$ NMR (121 MHz, acetone-*d*₆): δ 25.9 (s) ppm. ${}^{13}C{}^{1}H{}$ NMR (acetone-*d*₆, 201 MHz) δ : 33.8 (s, CH₃); 35.4 (s, CCH₃); 127.5 (t, ${}^{3}J_{P,C} = 27.6$ Hz, CP of C₁₅H₁₂O); 127.9 (s, CH of C₁₅H₁₂O); 128.5 (s, CH of C₁₅H₁₂O); 130.4 (s, *m*-C of Ph); 133.6 (s, *p*-C of Ph); 134.8 (s, *o*-C of Ph); 135.6 (s, *β*-C of Py); 137.5 (s, CH of C₁₅H₁₂O); 155.5 (s, *α*-C of Py); 171.7 (s, CO of C₁₅H₁₂O). The peaks correspond to *ipso*-C of Ph and CCC(CH₃) are merged with the other peaks.

Suzuki-Miyaura Cross-Coupling Reaction

An oven-dried flask was charged with aryl bromide (1.0 mmol), phenyl boronic acid (1.3 mmol), palladium complex 7 (0.1 mmol, equivalent to 0.2 mol % of Pd), DMA (3.0 mL), and aqueous K_2CO_3 (2 mmol, 1 mL) and was placed on an oil bath at 120 °C under a nitrogen atmosphere, and the reaction mixture was stirred until maximum conversion of aryl bromide to product occurred. The reaction mixture was cooled to room temperature, was diluted with water (10 mL), and neutralized by dropwise addition of dilute HCl (aq). The mixture was extracted with hexane (3 × 15 mL), washed with water (2 × 10 mL) followed by brine solution (2 × 10 mL) and dried over anhydrous Na₂SO₄. The solvent of the extract was removed with rotary evaporator, and the resulting residue was analyzed by ¹H NMR spectroscopy.

Density Functional Calculations

Full geometry optimizations are carried out for all the Pd complexes of dppe and dppf by employing BP86 density functional. The BP86 density functional is a generalized gradient approximation functional and is formed by the combination of Becke's 1988 exchange functional with Perdew's 1986 correlation functional.^{17,18} Quasi Newton-Raphson based algorithm is used for geometry optimization. Gaussian type double split valence basis functions, namely, 6-31G** are used for Se, N, P, C and H atoms and 3-21G* basis set for Pd and Fe atoms are used for the calculations. The solvent is modeled by using conductor like screening model (COSMO).¹⁹ GAMESS suites of *ab initio* program systems on a LINUX cluster platform is employed to carry out all electronic structure calculations.²⁰ Molecular geometries and orbitals are visualized by using the MOLDEN and MOLEKEL program systems.^{21,22}

References

- T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsu, Dichloro [l,l/bis(diphenylphosphino)ferrocene] palladium-(II): An Effective Catalyst for Cross-Coupling of Secondary and Primary Alkyl Grignard and Alkylzinc Reagents with Organic Halides, *J. Am. Chem. Soc.*, 1984, **106**, 158.
- 2. A. M. Johns, M. Utsunomiya, C. D. Incarvito, J. F. Hartwig, A Highly Active Palladium Catalyst for Intermolecular Hydroamination. Factors that Control Reactivity and Additions of Functionalized Anilines to Dienes and Vinylarenes, *J. Am. Chem. Soc.*, 2006, **128**, 1828.
- P. A. Mane, S. Dey, A. K. Pathak, M. Kumar, N. Bhuvanesh, Xantphos-Capped Pd(II) and Pt(II) Macrocycles of Aryldithiolates: Structural Variation and Catalysis in C-C Coupling Reaction, *Inorg. Chem.*, 2019, 58, 2965.
- P. J. Stang, B. Olenyuk, J. Fan, A. M. Arif, Combining Ferrocenes and Molecular Squares: Self-Assembly of Heterobimetallic Macrocyclic Squares Incorporating Mixed Transition Metal Systems and a Main Group Element. Single-Crystal X-ray Structure of [Pt(dppf)(H₂O)₂][OTf]₂, Organometallics., 1996, 15, 904.
- S. Fallis, G. K. Anderson, N. P. Rath, Nucleophilic attack on or displacement of coordinated 1,5-cyclooctadiene. Structures of platinum complexes [Pt{σ:η²-C₈H₁₂(PPh₃)}(dppe)][ClO₄]₂ and [Pt(dppe)(H₂O)₂][O₃SCF₃]₂, Organometallics., 1991, 10, 3180.
- K. V. Vivekananda, S. Dey, A. Wadawale, N. Bhuvanesh, V. K. Jain, Syntheses of Pd(II)/Pt(II) complexes with non-chelating 4-pyridylselenolate ligand ranging from mononuclear to macrocyclic structures and their utility as catalysts in Suzuki C-C coupling reaction, *Dalton Trans.*, 2013, 42, 14158.

- B. Boduszek, R. Gancarz, Pyridine-4-Selenenyl Bromides as New Reagents for Seleenylation of Olefins, *J. prakt. Chem.*, 1996, **338**, 186.
- APEX3 "Program for Data Collection on Area Detectors" BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711–5373 USA.
- SADABS, G. M. Sheldrick, "Program for Absorption Correction of Area Detector Frames", BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI53711–5373 USA.
- 10. G. M. Sheldrick, SHELXT–Integrated space-group and crystal-structure determination, *ActaCryst.*, 2015, **A71**, 3.
- 11. G. M. Sheldrick, Crystal structure refinement with SHELXL, ActaCryst., 2015, C71, 3.
- G. M. Sheldrick, A short history of SHELX, *ActaCryst.*, 2008, A64, 112. XT, XS, BRUKER AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711–5373 USA.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, 42, 339.
- 14. CrysAlisPro 1.171.40.57a (Rigaku Oxford Diffraction, 2019).
- Empirical Absorption Correction Using Spherical Harmonics, Implemented in Scale3 Abspack Scaling Algorithm, Version 171.33.41, CrysAlisPro Oxford Diffraction Ltd. Yarnton, UK, 2009.
- 16. D. Kratzert, FinalCif, V61, https://www.xs3.uni-freiburg.de/research/finalcif.
- 17. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, *Phys. Rev. A.*, 1988, **38**, 3098.
- 18. J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, *Phys. Rev.* B., 1986, **33**, 8822.
- 19. P. Su, H. Li, Energy decomposition analysis of covalent bonds and intermolecular interactions, *J. Chem. Phys.*, 2009, **131**, 014102.
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A Montgomery, A. General atomic and molecular electronic structure system, *J. Comput. Chem.*, 1993, 14, 1347.
- 21. G. Schaftenaar, J. H. Noordik, Molden: a pre- and post-processing program for molecular and electronic structures. *J. Comp.-Aided Mol. Des.*, 2000, **14**, 123.
- 22. S. Portmann, H. Luthi, MOLEKEL: An Interactive Molecular Graphics Tool, *Chimia.*, 2000, **54**, 766.

Compound	6a	$7a \cdot CH_2Cl_2$	7b	
Chemical formula	$C_{64}H_{56}F_6N_2O_6P_4Pd_2S_2Se$	$C_{81}H_{66}Cl_2F_6Fe_2N_2O_6P_4P$	$C_{160}H_{128}F_{12}Fe_4N_4O_{12}P_8$	
	2	$d_2S_2Se_2$	$Pd_4S_4Se_4$	
Formula weight	1621.82	2018.67	3867.50	
Crystal Size (mm ³)	0.307 x 0.081 x 0.076	0.204 x 0.165 x 0.072	0.127 x 0.032 x 0.024	
Diffractometer	A BRUKER APEX 3	A BRUKER Quest X-	A BRUKER Venture	
		ray	X-ray	
T/K	110	110	110	
λ/Å	0.71073	0.71073	1.54178	
Crystal system	Monoclinic	Monoclinic	Tetragonal	
Space group	$P2_{1}/n$	$P2_{1}/c$	P4/ncc	
a/Å	16.6522(5)	12.6538(10)	28.0952(5)	
b/Å	10.2800(3)	16.2974(13)	28.0952(5)	
c/Å	17.9838(5)	37.773(3)	22.2553(6)	
α/\circ	90°	90°	90°	
β/°	97.5510(10)	97.989(2)	90°	
γ/°	90°	90°	90°	
$V/Å^3$	3051.85(15)	7714.1(11)	17567.0(8)	
$\rho_{calc}, g \ cm^{-3}$	1.765	1.738	1.462	
Ζ	2	4	4	
μ/mm^{-1}	2.029	2.048	8.436	
Reflections collected	22708	241617	474756	
Data/restraints/param	6966 / 0 / 397	17750 / 385 / 1043	7494 / 495 / 562	
eters				
Final R1,wR2 indices	R1 = 0.0327	R1 = 0.0371	R1 = 0.0466	
	wR2 = 0.0638	wR2 = 0.0721	wR2 = 0.1036	
R1, wR2 (all data)	R1 = 0.0497	R1 = 0.0514	R1 = 0.0586	
	wR2 = 0.0697	wR2 = 0.0804	wR2 = 0.1149	
Largest diff.peak &	0.519 and -0.453	0.888 and -0.737	0.944 and -0.850	
hole [eÅ ⁻³]				

Table S1 Crystallographic and structure refinement data for palladium complexes

Compound	$4 \qquad 9 \cdot (CF_3 SO_3 H)_2 \cdot (CHC)$		$10 \cdot (CF_3SO_3H)_{0.47} \cdot C_3H_6$	
		0	0	
Chemical formula	$C_{100}H_{80}F_6N_4O_8P_4Pd_3\\$	$C_{68}H_{61}Cl_6F_{12}N_2O_{13}P_4Pd_2S_6\\$	$C_{48.47}H_{42}F_{4.41}NO_{6.41}P_2Pd$	
	S_2Se_4		S _{2.47}	
Formula weight	2402.72	2083.92	1072.35	
Crystal Size (mm ³)	0.021 x 0.018 x	0.100 x 0.100 x 0.100	0.102 x 0.029 x 0.018	
	0.014			
Diffractometer	A BRUKER	XtaLAB Synergy,	A BRUKER Venture	
	Venture X-ray	Dualflex, HyPix four-	X-ray	
		circle		
T/K	100.0	100	110	
λ/Å	1.54178	1.54178	1.54178	
Crystal system	Triclinic	triclinic	Trigonal	
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -3	
a/Å	12.1772(4)	14.65160(10)	23.6600(11)	
b/Å	14.4575(5)	16.68330(10)	23.6600(11)	
c/Å	16.4829(5)	17.44540(10)	15.0947(7)	
$\alpha/^{\circ}$	107.299(2)	105.9860(10)	90°	
β/°	96.961(2)	90.7770(10)	90°	
γ/°	113.037(2)	92.5240(10)	120°	
$V/Å^3$	2454.67(15)	4093.95(5)	7317.9(8)	
$\rho_{calc}, g \ cm^{-3}$	1.625	1.691	1.460	
Ζ	1	2	6	
μ/mm^{-1}	7.668	8.286	5.242	
Reflections	43686	59419	43366	
collected				
Data/restraints/para	7754 / 220 / 625	16864 / 412 / 1317	7145 / 143 / 636	
meters				
Final R1,wR2	R1 = 0.0796	$R_1 = 0.0725$	R1 = 0.0981	
indices	wR2 = 0.1417	$wR_2 = 0.1893$	wR2 = 0.2288	
R ₁ , wR ₂ (all data)	R1 = 0.1039	$R_1 = 0.0740$	R1 = 0.1110	
	wR2 = 0.1565	$wR_2 = 0.1910$	wR2 = 0.2357	
Largest diff.peak &	1.514 and -0.930	5.58 and -2.29	2.750 and -1.044	
hole [eÅ ⁻³]				

Table S2 Crystallographic and structure refinement data for palladium complex	es
---	----

Pd1-Se1	2.5174(12)
Pd1-P1	2.339(3)
Pd1-P2	2.347(3)
Pd2-Se2	2.4346(10)
Pd1-Se2	2.4728(12)
Pd2-Se1	2.4300(10)
P1-Pd1-P2	102.55(9)
P1-Pd1-Se1	83.70(7)
P2-Pd1-Se1	157.74(7)
Se2-Pd1-Se1	79.75(4)
P1-Pd1-Se2	160.40(7)
Se2-Pd2-Se1	82.25(3)
Pd2-Se1-Pd1	84.18(3)
Pd2-Se2-Pd1	85.04(4)
Se2#-Pd2-Se1	97.75(3)

Table S3 Selected interatomic distances [Å] and angles [°] of 4

	6a	7a·CH ₂ Cl ₂	7b
Pd1-Se1/Se1#	2.4773(3)	2.4525(4)	2.4780(6)
	(2.512)	(2.502)	(2.511)
Pd1-P1	2.2731(7)	2.3073(9)	2.3352(12)
	(2.315)	(2.351)	(2.372)
Pd1–P2	2.2518(8)	2.2659(8)	2.2761(13)
	(2.308)	(2.344)	(2.315)
Pd1-N1/N1#	2.121(2)	2.123(3)	2.107(4)
	(2.175)	(2.168)	(2.156)
Pd2-Se2	-	2.4941(4)	-
		(2.543)	
Pd2–N2	-	2.073(3)	-
		(2.168)	
P1-Pd1-P2	83.80(3)	101.64(3)	100.01(4)
	(84.71)	(99.00)	(99.55)
P1-Pd1-Se1/Se1#	171.57(2)	162.49(3)	173.04(4)
	(169.11)	(164.08)	(174.73)
P1-Pd1-N1/N1#	91.66(6)	89.32(7)	87.95(11)
	(93.70)	(88.51)	(88.73)
P2-Pd1-Se1/Se1#	91.17(6)	82.90(2)	85.52(3)
	(89.13)	(84.80)	(85.53)
P2-Pd1-N1/N1#	170.21(7)	164.38(8)	169.89(11)
	(173.49)	(167.34)	(168.61)
N1/N1#-Pd1-Se1#	94.31(6)	89.95(7)	86.12(10)
	(95.28)	(89.91)	(85.37)

Table S4 Selected interatomic distances [Å] and angles [°] of **6a**, **7a**·CH₂Cl₂ and **7b** by X-ray diffraction analysis. The values in parenthesis were calculated applying BP86 DFT Functional.^a

[#] symmetry related atom. ^a Calculation was based on the cationic complex part.

Pd1-S1	2.264(3)
Pd1–P1	2.272(3)
Pd1–P2	2.277(3)
Pd1–O1	2.118(6)
P1-Pd1-P2	169.66(10)
P1-Pd1-S1	94.14(10)
P2-Pd1-S1	95.54(10)

Table S5 Selected interatomic distances [Å] and angles [°] of $10 \cdot (CF_3SO_3H)_{0.47} \cdot C_3H_6O$

	complex-6a		complex-7a		complex-7b	
Stability	-916		-1231		-1473	
(kcal/mol)						
HOMO-LUMO	1.	76	1.	43	1.52	
gap (eV)						
% composition of	HOMO	LUMO	HOMO	LUMO	HOMO	LUMO
frontier orbitals						
Fe	-	-	93	3	91	3
Pd	12	27	1	30	1	29
Se	76	9	1	11	1	10
Р	2	24	2	24	2	25
Ν	2	9	1	9	1	9
С	7	30	1	22	3	23
Н	1	1	1	1	1	1
Absorption peak	432 (430) ^b	496 (488)		-	
(nm)						
Oscillator	0.	07	0.08		-	
strength						
		Во	ond order			
Pd–Se	0.	36	0.55		0.52	
Pd–N	0.	50	0.	35	0.35	
Pd–P	0.30		0.33		0.40	

Table S6 Energy Parameters and Composition of Frontier Orbitals of Pd ComplexesCalculated Applying BP86 DFT Functional^a.

^a Calculation was based on the cationic complex part.

^b Experimental values are shown in the parentheses.

m/z	Ion	Calculated peak	Experimental
		of the most	peak of the most
		abundant ion	abundant ion
1627.9	$[(6a + 2CH_3CN + H) - C_6H_5]^+$	1628.93	1628.89
	$(C_{62}H_{58}F_6N_4O_6P_4Pd_2S_2Se_2)^+$		
1472.9	$[6a - OTf]^+$	1472.95	1472.93
	$(C_{63}H_{56}F_3N_2O_3P_4Pd_2SSe_2)^+$		
1347.0	$[(6a + CH_3CN) - 2Sepy]^+$	1350.02	1350.01
	$(C_{56}H_{51}F_6NO_6P_4Pd_2S_2)^+$		
1318.9	$[6a - (2C_6H_5 + OTf)]^+$	1318.87	1318.93
	$(C_{51}H_{46}F_3N_2O_3P_4Pd_2SSe_2)^+$		
1289.9	$[(6a + CH_3CN + 2H) - (2C_6H_5 + 2OTf)]^+$	1290.00	1289.88
	$\left(C_{58}H_{56}N_{3}P_{4}Pd_{2}Se_{2}\right)^{+}$		
1218.0	$[(6a + 3CH_3CN + 2H) - (3C_6H_5 + 2OTf)]^+$	1217.97	1218.03
	$\left(C_{50}H_{52}N_5P_4Pd_2Se_2\right)^+$		
1188.9	$[(6a + Na) - (Sepy + 2OTf)]^+$	1189.03	1188.98
	$(\mathrm{C}_{57}\mathrm{H}_{52}\mathrm{NNaP_4Pd_2Se})^+$		
1088.1	$[(6a + 2CH_3CN + H) - (2Sepy + 2C_6H_5 +$	1088.02	1088.09
	$OTf)]^+$		
	$(C_{45}H_{45}N_2P_4Pd_2SF_3O_3)^+$		

Table S7 Calculated and experimental peaks of the fragmented ions of $[Pd(dppe)(4-Sepy)]_n(OTf)_n(6: n = 2, 6a; n = 4, 6b).$

m/z	Ion	Calculated	Experimental
		peak of the	peak of the
		most abundant	most abundant
		ion	ion
2373.6	$\left[\left(\mathbf{7b} + CH_3CN + H\right) - \left(5C_6H_5 + 4OTf + dppf\right)\right]^+$	2373.61	2373.64
	$(C_{94}H_{79}Fe_3N_5P_6Pd_4Se_4)^+$		
2332.5	$[(7b + H) - (5C_6H_5 + 4OTf + dppf)]^+$	2332.58	2332.58
	$(C_{92}H_{76}Fe_3N_4P_6Pd_4Se_4)^+$		
2182.5	$[(7b + 2CH_3CN) - (7C_6H_5 + 4OTf + dppf + py)]^+$	2181.52	2181.62
	$(C_{79}H_{67}Fe_3N_5P_6Pd_4Se_4)^+$		
1912.8	$\left[(Pd_{3}(dppf)_{3}(Sepy)_{2}+2H)-5C_{6}H_{5}\right]^{+}$	1912.77	1912.77
	$(C_{82}H_{69}Fe_3N_2P_6Pd_3Se_2)^+$		
1791.7	$[(7a + 4CH_3CN + 2H) - 4C_6H_5]^+$	1791.81	1791.68
	$\left(C_{64}H_{58}F_{6}Fe_{2}N_{6}P_{4}Pd_{2}Se_{2}O_{6}S_{2}\right)^{+}$		
1784.9	$[7a - OTf]^+$	1784.89	1784.86
	$(C_{79}H_{64}F_3Fe_2N_2O_3P_4Pd_2SSe_2)^+$		
1761.9	$[(Pd_2(dppf)_2(Sepy)_2Se+3CH_3CN+H)-C_6H_5]^+$	1760.91	1760.82
	$(C_{78}H_{69}Fe_2N_5P_4Pd_2Se_3)^+$		
1757.9	$\left[(Pd_2(dppf)_2(Sepy)_2Se+CH_3CN+H)\right]^+$	1755.89	1755.82
	$(C_{80}H_{68}Fe_2N_3P_4Pd_2Se_3)^+$		
1731.7	$[(7a + 6CH_3CN) - (5C_6H_5 + C_5H_4)]^+$	1731.78	1731.77
	$(C_{57}H_{53}F_6Fe_2N_8O_6P_4Pd_2S_2Se_2)^+$		
1641.9	$[(7a + 2CH_3CN + H) - (C_6H_5 + 2OTf)]^+$	1641.96	1641.93
	$(C_{76}H_{66}Fe_2N_4P_4Pd_2Se_2)^+$		
1630.8	$[7a - (2C_6H_5 + OTf)]^+$	1630.81	1630.86
	$(C_{67}H_{54}F_3Fe_2N_2O_3P_4Pd_2SSe_2)^+$		
1601.9	$\left[\left(7a + CH_3CN + 2H\right) - \left(C_6H_5 + 2OTf\right)\right]^+$	1601.94	1601.82
	$(C_{74}H_{64}Fe_2N_3P_4Pd_2Se_2)^+$		
1557.9	$\left[\mathbf{7a} - (py + 2OTf)\right]^+$	1557.90	1557.87
	$(C_{73}H_{60}Fe_2NP_4Pd_2Se_2)^+$		
817.9	[Pd(dppf)(Sepy)] ⁺	817.97	817.96
	$(C_{39}H_{32}FeNP_2PdSe)^+$		

Table S8 Calculated and experimental peaks of the fragmented ions of $[Pd(dppf)(4-Sepy)]_n(OTf)_n$ (7: n = 2, 7a; n = 4, 7b)

H ₃ COC	$-Br + (HO)_2B$	catalyst solvent, base,	7 time, temp		COCH ₃
entry	solvent	base	temp (°C)	time (h)	% yield ^b
Effect of Solven	et				
1	Methanol	K ₂ CO ₃	120	6	24
2	DMA	K ₂ CO ₃	120	6	71
3	DMF	K ₂ CO ₃	120	6	46
4	Dioxane	K ₂ CO ₃	120	6	16
5	Acetone	K ₂ CO ₃	120	6	12
Effect of Base					
6	DMA	K ₂ CO ₃	120	6	71
7	DMA	Cs ₂ CO ₃	120	6	13
8	DMA	КОН	120	6	15
9	DMA	Bu4NOH	120	6	25
10	DMA	NaOAc	120	6	5
Effect of Tempe	erature				
11	DMA	K ₂ CO ₃	80	6	16
12	DMA	K ₂ CO ₃	100	6	41
13	DMA	K ₂ CO ₃	110	6	60
14	DMA	K ₂ CO ₃	120	6	71

Table S9 Optimization of reaction parameters of reaction between 4-bromoacetophenone and phenyl boronic $acid^a$

^{*a*}Reaction conditions: Aryl bromide (1.0 mmol), phenyl boronic acid (1.3 mmol), base (2 mmol) in H₂O, DMA (3 mL), 0.2 mol% of Pd added, ^{*b*}Determined by ¹H NMR spectroscopy. [Pd(dppf)(4-C₅H₄NSe)]_n(OTf)_n (7).

Table S10 Variation of time of reaction of 4-bromoacetophenone and phenyl boronic acid^a

н₃сос—	$Br + (HO)_2B$	DMA, K ₂ CO ₃ , t	t 7 time, 120 °C ► H ₃	coc-
entry	Time (hrs)	mol% of Pd	yield $(\%)^b$	TON
1	0.5	0.2	8	40
2	1	0.2	16	80
3	2	0.2	29	145
4	4	0.2	51	255
5	6	0.2	72	360
6	8	0.2	87	435
7	9	0.2	94	470
8	10	0.2	100	500

^{*a*}Reaction conditions: Aryl bromide (1.0 mmol), phenyl boronic acid (1.3 mmol), K₂CO₃ (2 mmol) in H₂O, DMA (3 mL). ^{*b*}Determined by ¹H NMR spectroscopy.

R-		D)2B-Solv	" Pd " com /ent, K ₂ CC	nplex 0 ₃ , 120 °	<mark>. →</mark>	<u>}</u>	$\langle \rangle$	-R
Entry	Ar–X	Complex	Solvent	Temp	mol% of	Time	%	TON
				(°C)	"Pd"	(h)	yield ^b	
1	4-CH ₃ C ₆ H ₄ Br	trans-[PdCl(4-	1,4-	100	0.1	20	39 ^c	390
		SeC5H4N)(PPh3)2]	dioxane					
2	$4\text{-}CH_3C_6H_4Br$	trans-[PdCl(4-	1,4-	100	0.3	8	40 ^c	133
		SeC5H4N)(PPh3)2]	dioxane					
3	4-CH ₃ C ₆ H ₄ Br	trans-[PdCl(4-	1,4-	100	0.5	8	80 ^c	166
		SeC5H4N)(PPh3)2]	dioxane					
4	4-CH ₃ C ₆ H ₄ Br	7	DMA	120	0.2	10	91	455
5	4-CH ₃ COC ₆ H ₄ Br	trans-[PdCl(4-	1,4-	100	0.01	12	14 ^c	1400
		SeC5H4N)(PPh3)2]	dioxane					
6	4-CH ₃ COC ₆ H ₄ Br	[PdCl(4-	1,4-	100	0.01	12	29 ^c	2900
		SeC ₅ H ₄ N)(PPh ₃)] _n	dioxane					
7	$4\text{-}CH_3COC_6H_4Br$	7	DMA	120	0.01	10	92	9200

Table S11 Reaction between aryl halide and phenyl boronic acid by Pd complexes of 4pyridylselenolate ligand.^a

^{*a*}Reaction conditions: Aryl bromide (1.0 mmol), phenyl boronic acid (1.3 mmol), base (2 mmol) in H₂O, solvent (3 mL), mol% of Pd added. ^{*b*}Determined by ¹H NMR spectroscopy. ^{*c*}Vivekananda *et al*.^[6]

Fig. S1 ¹H NMR (600 MHz, CDCl₃, 298 K) spectra of **2**. δ: 4.18 (s, 4H, H_β-ferr), 4.36 (s, 4H, H_α-ferr), 7.16 (d, ${}^{3}J_{H,H} = 5.0$ Hz, 4H, H_β-Py), 7.35 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, *m*-H of Ph), 7.45 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 4H, *p*-H of Ph), 7.74-7.79 (m, 8H, *o*-H of Ph), 7.85 (d, ${}^{3}J_{H,H} = 5.0$ Hz, 4H, H_α-Py).

Fig. S2 ³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K) spectra of 2. δ : 21.3 (s, ²*J*_{Se,P} = 52.2 Hz) ppm.

Fig. S3. ¹³C{¹H} NMR (201 MHz, CDCl₃, 298 K) spectra of **2**. δ: 73.3 (s, β-C of ferr); 76.0 (s, α-C of ferr); 75.9 (d, ¹*J*_{P-C} = 50.3 Hz, *ipso*-C of ferr); 128.2 (s, *m*-C of Ph); 130.6 (s, β-C of Py); 131.2 (s, *p*-C of Ph); 132.1 (d, ¹*J*_{P-C} = 48.3 Hz, *ipso*-C of Ph); 134.7 (s, *o*-C of Ph); 146.9 (s, α-C of Py); 151.2 (s, *ipso*-C of Py).

Fig. S4 ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of **3**. δ: 1.75 (s, 6H, CH₃), 7.10-7.23 (m, 14H, H_β-Py + CHC*H*CH + *m*-H of Ph), 7.23-7.29 (m, 6H, *p*-H of Ph + CPC*H*CH), 7.37-7.50 (m, 8H, *o*-H of Ph), 7.57-7.63 (m, 2H, CHC*H*CC), 7.80 (d, ${}^{3}J_{H,H} = 5.1$ Hz, 4H, H_α-Py).

Fig. S5 ${}^{31}P{}^{1}H$ NMR (121 MHz, CDCl₃, 298 K) spectra of 3. δ : 10.6 (s) ppm.

Fig. S6 ³¹P{¹H} NMR (243 MHz, CDCl₃, 298 K) spectra of the reaction of Pd(dppf)(OTf)₂ and Na(4-Sepy) in 1:1 ratio.

Fig. S7 ORTEP diagram of complexes Pd(dppf)Cl(4-Sepy) and Pd(dppf)Cl₂ in the crystal obtained from the reaction of Pd(dppf)(OTf)₂ and Na(4-Sepy). The hydrogen atoms are omitted for clarity.

Fig. S8 ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of **4**. δ: 1.81 (s, CH₃), 6.85 (d, J = 6.0 Hz, H_β-Py), 6.90-6.98 (m, CH*CH*CH), 6.99-7.13 (m, *m*-H of Ph + CH*CH*CH), 7.14-7.29 (m, *p*-H of Ph + H_β-Py + CP*CH*CH), 7.30-7.52 (m, *o*-H of Ph + H_α-py + CP*CH*CH), 7.56 (d, J = 6.0 Hz, CH*CH*CC). 7.63 (d, J = 6.0 Hz, H_α-Py), 7.87 (d, J = 6.0 Hz, CH*CH*CC).

Fig. S9 ${}^{31}P{}^{1}H$ NMR (121 MHz, CDCl₃, 298 K) spectra of 4. δ : 22.8 (s) ppm.

Fig. S10 ¹H NMR (500 MHz, CDCl₃, 298 K) spectra of **5**. δ: 3.87 (s, 4H, H_β-ferr), 4.34 (s, 4H, H_β-ferr), 4.62 (s, 4H, H_α-ferr), 4.73 (s, 4H, H_α-ferr), 6.59 (d, ${}^{3}J_{H,H} = 5.6$ Hz, 4H, H_β-Py), 6.92 (t, ${}^{3}J_{H,H} = 7.1$ Hz, 12H, *p*-H of BPh; the peak correspond to the 4H of H_α-Py merged in the base), 7.08 (t, ${}^{3}J_{H,H} = 7.1$ Hz, 24H, *m*-H of BPh; the peak correspond to the 8H of *m*-H of PPh merged in the base), 7.26-7.32 (m, 12H, *o*-H of PPh + *p*-H of PPh), 7.50 (br m, 16H, *o*-H of BPh), 7.53-7.56 (br t, ${}^{3}J_{H,H} = 7.3$ Hz, 8H, *m*-H of PPh), 7.64 (t, ${}^{3}J_{H,H} = 7.3$ Hz, 4H, *p*-H of PPh), 7.89 (dd, ${}^{3}J_{P,H} = 12.5$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, *o*-H of Ph).

Fig. S11 ³¹P{¹H} NMR (243 MHz, CDCl₃, 298 K) spectra of **5**. δ: 30.6 (s, P *trans* to Se), 34.2 (s, P *trans* to N) ppm.

Fig. S12 ORTEP diagram of [Pd(dppf)(4-Sepy)]₂(BPh₄)₂ (**5**) ellipsoids drawn at 35% probability. The dppf phenyl groups, hydrogen atoms and BPh₄ groups are omitted for clarity.

Fig. S13 ¹H NMR (600 MHz, CD₂Cl₂, 298 K) spectra of **6**. δ: 2.45-2.58 (m, 4H, CH₂), 2.61-2.74 (m, 4H, CH₂), 7.18 (d, ³*J*_{H,H} = 6.0 Hz, 4H, H_β-Py, dimer), 7.38 (br m, 4H, H_α-Py), 7.47-7.55 (m, 16H, *m*-H of Ph + *o*-H of Ph), 7.58-7.63 (m, 4H, *p*-H of Ph), 7.67 (dt, ³*J*_{H,H} = 7.5 Hz, ${}^{4}J_{P,H}$ = 2.5 Hz, 8H, *m*-H of Ph), 7.71 (t, ³*J*_{H,H} = 7.5 Hz, 4H, *p*-H of Ph), 7.86 (dd, ³*J*_{P,H} = 12.6 Hz, ³*J*_{H,H} = 7.5 Hz, 8H, *o*-H of Ph). A peak at δ 7.03 (d, ³*J*_{H,H} = 6.0 Hz, 4H, H_β-Py) is assigned to the tetramer with the ratio 9:91 with the dimer. All other signals for dimer and tetramer are overlapped.

Fig. S14 ³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 298 K) spectra of 6. δ : dimer, 56.8 (s, P *trans* to Se), 62.7 (s, P *trans* to N); tetramer, 55.1 (s, P *trans* to Se), 61.0 (s, P *trans* to N) ppm, in 93:7 ratio.

Fig. S15 ¹³C{¹H} NMR (201 MHz, CD₂Cl₂, 298 K) spectra of **6**. δ: 129.9 (d, ${}^{3}J_{C,P} = 10.1$ Hz, *m*-C of Ph); 130.5 (d, ${}^{2}J_{C,P} = 12.1$ Hz, *o*-C of Ph); 133.2 (d, ${}^{3}J_{C,P} = 10.1$ Hz, *m*-C of Ph); 133.4 (s, *p*-C of Ph); 133.6 (s, *β*-C of Py); 133.8 (m, two *ipso*-C of Ph are merged); 134.3 (d, ${}^{2}J_{C,P} = 12.1$ Hz, *o*-C of Ph); 137.2 (s, *p*-C of Ph); 149.5 (s, *α*-C of Py), 152.0 (s, *ipso*-C of Py).

Fig. S16 ¹H NMR (600 MHz, CD₂Cl₂, 298 K) spectra of crude product of **7.** The reaction was performed in CH₂Cl₂. δ: dimer, 3.81; tetramer 3.85 (s, 4H, 85:15, H_β-ferr), tetramer, 4.33; dimer, 4.34 (s, 4H, H_β-ferr), tetramer, 4.66; dimer, 4.72 (s, 4H, 16:84, H_α-ferr); tetramer, 4.83; dimer, 4.93 (s, 4H, 15:85, H_α-ferr), tetramer, 6.86; dimer, 7.09 (d, ${}^{3}J_{H,H} = 6$ Hz, 4H, H_β-Py), 7.22 (t, ${}^{3}J_{H,H} = 6$ Hz, 8H, *m*-H of Ph), 7.37 (t, ${}^{3}J_{H,H} = 6$ Hz, 4H, H_{α} -Py), 8.02 (m, 8H, *o*-H of Ph).

Fig. S17 ${}^{31}P{}^{1}H$ NMR (243 MHz, CD₂Cl₂, 298 K) spectra of crude product of 7. The reaction was performed in CH₂Cl₂. δ : Tetramer, 25.2 (s), 28.9 (s); Dimer 27.6 (s), 29.6 (s) in 15:85 ratio.

Fig. S18. ¹³C{¹H} NMR (201 MHz, CD₂Cl₂, 298 K) spectra of 7. δ: 72.5 (d, ¹*J*_{P-C} = 54.3 Hz, *ipso*-C of ferr, D); 74.2 (d, ²*J*_{P,C} = 8.0 Hz, α-C of ferr, D); 74.3 (d, ²*J*_{P,C} = 8.0 Hz, α-C of ferr, T); 75.5, 75.6 (each d, ²*J*_{P,C} = 8.0 Hz, β-C of ferr, T); 75.8 (d, ³*J*_{P,C} = 8.0 Hz, β-C of ferr, D); 77.5 (d, ²*J*_{P,C} = 10.1 Hz, α-C of ferr, T); 77.9 (d, ²*J*_{P,C} = 10.1 Hz, α-C of ferr, D); 128.9 (s); 129.2 (d, ³*J*_{P,C} = 10.1 Hz, *m*-C of Ph, D); 129.5 (d, ²*J*_{P,C} = 10.1 Hz, *o*-C of Ph, D); 129.3 (s), 129.8 (d, *J* = 10.1 Hz), 130.2 (s), 130.5 (s), 130.6 (s) (*o*-/*m*-C of Ph, T; *ipso*-C of Ph, D and T); 131.9 (s, *p*-C of Ph, T); 132.3 (s, *p*-C of Ph, D); 132.6 (s, β-C of Py, T); 132.8 (s, β-C of Py, D); 133.9 (d, ³*J*_{P,C} = 12.1 Hz, *m*-C of Ph, D), 134.4 (d, ²*J*_{P,C} = 8.1 Hz, *o*-C of Ph, T); 135.4 (d, ²*J*_{P,C} = 10.1 Hz, *o*-C of Ph, D); 137.3 (s, *p*-C of Ph, D); 148.9, 149.4 (each s, α-C of Py, D, T); 150.9 (s, *ipso*-C of Py, D).

Fig. S19 ¹H NMR (600 MHz, CD₂Cl₂, 298 K) spectra of recrystallized product of **7**. The reaction was performed in acetone. δ: dimer, 3.81; tetramer 3.85 (s, 4H, 85:15, H_β-ferr), tetramer, 4.33; dimer, 4.34 (s, 4H, H_β-ferr), tetramer, 4.66; dimer, 4.72 (s, 4H, 16:84, H_α-ferr); tetramer, 4.83; dimer, 4.93 (s, 4H, 15:85, H_α-ferr), tetramer, 6.86; dimer, 7.09 (d, ${}^{3}J_{H,H} = 6$ Hz, 4H, H_β-Py), 7.22 (t, ${}^{3}J_{H,H} = 6$ Hz, 8H, *m*-H of Ph), 7.37 (t, ${}^{3}J_{H,H} = 6$ Hz, 4H, *p*-H of Ph), 7.49 (m, 16H, *o*-H of Ph + *m*-H of Ph), 7.69 (br s, 12H, *p*-H of Ph + H_α-Py), tetramer, 7.79 (br s, 4H, H_α-Py), 8.02 (m, 8H, *o*-H of Ph).

Fig. S20 ${}^{31}P{}^{1}H$ NMR (243 MHz, CD₂Cl₂, 298 K) spectra of recrystallized product of 7. The reaction was performed in acetone. δ : Tetramer, 25.2 (s), 28.9 (s); Dimer 27.6 (s), 29.6 (s) in 15:85 ratio.

Fig. S21. The ¹H DOSY NMR (800 MHz, CD₂Cl₂, 298 K) spectrum of 7a/b.

Fig. S22. ³¹P{¹H} NMR spectra (243 MHz, CD₂Cl₂, 298 K) of 7. (A) 7.1 mg/500 μ L; (B) 34.7 mg/500 μ L.

Fig. S23. Variable-temperature ¹H NMR (600 MHz, CD₂Cl₂) spectra of 7.

Fig. S24. Variable-temperature ${}^{31}P{}^{1}H$ NMR (243 MHz, CD₂Cl₂) spectra of 7.

Fig. S25 ¹H NMR (600 MHz, CDCl₃, 298 K) spectra of **7**. δ: 3.74 (s, 4H, H_β-ferr), 4.28 (s, 4H, H_β-ferr), 4.70 (s, 4H, H_α-ferr), 5.00 (s, 4H, H_α-ferr), 7.13 (d, ${}^{3}J_{H,H} = 5.6$ Hz, 4H, H_β-py), 7.18 (dt, ${}^{3}J_{H,H} = 7.5$ Hz, ${}^{4}J_{P,H} = 1.9$ Hz, 8H, *m*-H of Ph), 7.31 (t, ${}^{3}J_{H,H} = 7.5$ Hz, 4H, *p*-H of Ph), 7.46 (dd, ${}^{3}J_{P,H} = 12.5$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, *o*-H of Ph), 7.54 (dd, ${}^{3}J_{H,H} = 5.6$ Hz, ${}^{4}J_{P,H} = 3.1$ Hz, 4H, H_α-py), 7.63-7.67 (m, 4H, *p*-H of Ph), 7.69 (t, ${}^{3}J_{H,H} = 7.8$ Hz, 8H, *m*-H of Ph), 8.04 (dd, ${}^{3}J_{P,H} = 12.5$ Hz, ${}^{3}J_{H,H} = 7.5$ Hz, 8H, *o*-H of Ph).

Fig. S26 ³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K) spectra of **7**. δ : 28.5 (s, ²*J*_{Se,P} = 59.1 Hz, P *trans* to Se), 30.8 (s, P *trans* to N).

6a

7a

Fig. S27 Optimized minimum energy structures calculated applying DFT method.

Fig. 28 ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of 8. δ : 4.19 (br s, 8H, H_{\beta}-ferr), 4.41 (s, 8H, H_{\alpha}-ferr), 7.40 (br s, 16H, *m*-H of Ph), 7.49 (br s, 8H, *p*-H of Ph), 7.89 (br s, 16H, *o*-H of Ph), the peaks correspond to the 4H of H_{\beta}-py and H_{\alpha}-py each merged in the base.

Fig. 29 ³¹P{¹H} NMR (121 MHz, CDCl₃, 298 K) spectra of **8**. δ: 34.8 (s) ppm.

Fig. 30 ${}^{19}F{}^{1}H$ NMR (282 MHz, CDCl₃, 298 K) spectra of **8**. δ : -152.07 (br, ${}^{10}BF^{-}$), -152.12 (br s, ${}^{11}BF^{-}$) ppm.

Fig. S31 ³¹P NMR (243 MHz, CDCl₃, 298 K) spectra obtained from mixture of Pd(dppf)(OTf)₂ and **2** in 1:1 ratio in NMR tube. (**A**) only Pd(dppf)(OTf)₂; (**B**) only Pd(dppf)(4-Sepy)₂; (**C**) immediately after addition; (**D**) after 2 days.

Fig. S32 ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of **9**. δ : 2.63 (d, ²*J*_{P,H} = 22.9 Hz, 8H, CH₂), 7.36-7.76 (m, 48H, Ph + py).

Fig. S33 ³¹P NMR (121 MHz, CDCl₃, 298 K) spectra obtained from mixture of Pd(dppe)(OTf)₂ and 4-pySH in 1:1 ratio in NMR tube. (A) only Pd(dppe)(OTf)₂; (B) immediately after addition; (C) after 1 day; (D) after 4 days.

Fig. S34 ORTEP diagram of $[Pd(dppe)(4-Spy)]_2(OTf)_2 \cdot (CF_3SO_3H)_2 \cdot (CHCl_3)_2 \cdot H_2O$ (9 · (CF_3SO_3H)_2 · (CHCl_3)_2 · H_2O) ellipsoids drawn at 50% probability. The dppe phenyl groups, hydrogen atoms, solvent molecules, triflic acid and triflate ions are omitted for clarity.

Fig. S35 ¹H NMR (600 MHz, acetone-*d*₆, 298 K) spectra of **10**. δ: 1.87 (s, 6H, CH₃), 7.50 (t, ${}^{3}J_{\rm H,\rm H}$ = 7.5 Hz, 8H, *m*-H of Ph), 7.56-7.63 (m, 6H, *p*-H of Ph + H_β-py), 7.72-7.81 (m, 6H, H_α-py + CHCHCH + CPCHCH), 7.84 (dd, ${}^{3}J_{\rm P,\rm H}$ = 13.1 Hz, ${}^{3}J_{\rm H,\rm H}$ = 6.3 Hz, 8H, *o*-H of Ph), 8.14 (d, 7.8 Hz, 2H, CHCHCC).

Fig. S36 ${}^{31}P{}^{1}H$ NMR (121 MHz, acetone-*d*₆, 298 K) spectrum of 10. δ 25.9 (s) ppm.

Fig. S37. ¹³C{¹H} NMR (201 MHz, acetone-*d*₆, 298 K) spectra of **10**. δ: 33.8 (s, CH₃); 35.4 (s, CCH₃); 127.5 (t, ³*J*_{P,C} = 27.6 Hz, CP of C₁₅H₁₂O); 127.9 (s, CH of C₁₅H₁₂O); 128.5 (s, CH of C₁₅H₁₂O); 130.4 (s, *m*-C of Ph); 133.6 (s, *p*-C of Ph); 134.8 (s, *o*-C of Ph); 135.6 (s, *β*-C of Py); 137.5 (s, CH of C₁₅H₁₂O); 155.5 (s, *α*-C of Py); 171.7 (s, CO of C₁₅H₁₂O). The peaks correspond to *ipso*-C of Ph and CCC(CH₃) are merged with the other peaks.

Fig. S38 ESI mass-spectrum of **6**. The insets show the experimentally obtained isotope patterns of the fragments. The found and calculated values are for the most abundant peak of the ion.

Fig. S39 ORTEP diagram of [Pd(dppe)(4-Sepy)]₂(OTf)₂ (**6a**) ellipsoids drawn at 50% probability. The dppe phenyl groups, hydrogen atoms, and triflate ions are omitted for clarity.

(b)

(a)

Fig. S40 UV-vis spectra of 6 in ACN solution, a) stock solution, b) after dilution.

Fig. S41 Plot of time vs yield of the coupling product obtained from the reaction of 4bromoacetophenone and phenylboronic acid catalyzed by 7.

Fig. S42 PXRD patterns of (a) complex 7 before catalysis, (b) compound after catalysis reaction of complex 7.

Fig. S43 EDAX spectrum of the compound after catalysis reaction of complex 7.

Methyl 4– phenyl benzoate: (White solid, M.P. = 117 °C), ¹H NMR (500 MHz, CDCl₃) δ = 3.95 (s, 3H), 7.40 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.66 (d, J = 8.5 Hz, 2H), 8.11 (d, J = 8.0 Hz, 2H).

Fig. S44 ¹H NMR (500 MHz, CDCl₃, 298 K) spectra of methyl 4– phenyl benzoate

2-Phenylthiopene: (White crystal, M.P. = 35 °C), ¹H NMR (200 MHz, CDCl₃) δ 7.11 – 7.16 (m, 1H), 7.48 – 7.32 (m, 5H), 7.68 (d, J = 6.0 Hz, 2H).

Fig. S45 ¹H NMR (200 MHz, CDCl₃, 298 K) spectra of 2-phenylthiophene

4-Acetylbiphenyl: (White Solid, M.P. = 121 °C), ¹H NMR (300 MHz, CDCl₃) δ = 2.65 (s, 3H), 7.40 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.63 (d, J = 9.0 Hz, 2H), 7.69 (d, J = 9.0 Hz, 2H), 8.04 (d, J = 9.0 Hz, 2H).

Fig. S46 ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of 4-acetylbiphenyl

4-Methylbiphenyl: (White solid, M.P. = 49 °C), ¹H NMR (500 MHz, CDCl₃) δ = 2.41 (s, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.7 Hz, 2H), 7.51 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 8 Hz, 2H).

Fig. S47 ¹H NMR (500 MHz, CDC13, 298 K) spectra of 4-methylbiphenyl

4-Nitrobiphenyl: (White-Yellow solid, M.P. = 114 °C), ¹H NMR (200 MHz, CDCl₃) 7.51 – 7.48 (m, 3H), 7.63 (d, J = 6.0 Hz, 2H), 7.74 (d, J = 10.0 Hz, 1H), 8.30 (d, J = 10.0 Hz, 2H).

Fig. S48 ¹H NMR (200 MHz, CDC13, 298 K) spectra of 4-nitrobiphenyl

Biphenyl-4-carboxaldehyde: (White-Yellow solid, M.P. = 59 °C), ¹H NMR (500 MHz, CDCl₃) δ 7.42 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.64 (d, J = 7.0 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.5 Hz, 2H), 10.06 (s, 1H).

Fig. S49 ¹H NMR (500 MHz, CDCl₃, 298 K) spectra of biphenyl-4-carbaldehyde
4-Cyanobiphenyl: (White solid, M.P. = 86 °C), ¹H NMR (500 MHz, CDCl₃) δ 7.43(t, J = 7.5 Hz, 1H), 7.49 (t, J = 5.0 Hz, 2H), 7.59 (d, J = 5.0 Hz, 2H), 7.69 (d, J = 10.0 Hz, 2H), 7.73 (d, J = 10.0 Hz, 2H).

Fig. S50 ¹H NMR (500 MHz, CDCl₃, 298 K) spectra of 4-cyanobiphenyl.

4-Methoxy biphenyl: (White solid, M.P. = 87 °C), ¹H NMR (300 MHz, CDCl₃) δ 3.86 (s, 3H, CH₃), 6.69-7.00 (m, 2H), 7.27-7.45 (m, 3H), 7.46-7.61 (m, 4H)

Fig. S51. ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of 4-methoxy biphenyl.

4-Phenylquinoline: (Oil product), ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, J = 3.0 Hz, 1H), 7.51 (m, 6H), 7.73 (t, J = 7.5 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.94 (d, J = 4.2 Hz, 1H).

Fig. S52. ¹H NMR (600 MHz, CDCl₃, 298 K) spectra of 4-phenylquinoline.

1-PhenyInaphthalene: ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.63 (m, 9H), 7.90-8.05 (m, 3H)

Fig. S53. ¹H NMR (300 MHz, CDCl₃, 298 K) spectra of 1-phenylnaphthalene.