Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

High-Efficiency Synthesis of Enhanced-Titanium and Anatase-

Free TS-1 Zeolite by Using Crystallization Modifier

Jiani Zhang, ‡ Huaizhong Shi, ‡ Yue Song, Wenjing Xu, Xianyu Meng, Jiyang Li*

State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

* Corresponding author. E-mail address: lijiyang@jlu.edu.cn

‡ Equally contributed to this work.

Fig. S1 N_2 adsorption–desorption isotherms of NTS-61H and NTS-73H.	2
Fig. S2 The XPS spectra of Ti 2p of samples.	2
Fig. S3 ²⁹ Si MAS NMR spectra of NTS-61H and CTS-1.	3
Fig. S4 Photos of initial synthetic mixtures.	3
Fig. S5 XRD patterns of NTS-0H-xh and NTS-61H-xh.	4
Fig. S6 TEM images of NTS-61H-xh.	4
Fig. S7 TEM images of NTS-0H-xh.	5
Fig. S8 Respective yields of Ti in NTS-0H-xh and NTS-61H-xh.	5
Fig. S9 UV-vis spectra of NTS-0H-xh and NTS-61H-xh.	6
Fig. S10 XRD patterns of CTS-yd and NTS-yd.	6
Fig. S11 Relative crystallinity curves of CTS-yd and NTS-yd.	7
Fig. S12 UV-vis spectra of CTS-yd and NTS-yd.	7
Table S1 Textural properties of CTS-1 and synthesized TS-1 samples.	8
Table S2 Comparison of titanium-rich TS-1 synthesized by hydrothermal me	thods.
References	10

9

Fig. S1 N_2 adsorption–desorption isotherms of NTS-61H and NTS-73H.

Fig. S2 The XPS spectra of Ti 2p of NTS-0H, NTS-12H, NTS-36H, NTS-61H and NTS-73H.

Fig. S3 ²⁹Si MAS NMR spectra of NTS-61H and CTS-1.

Fig. S4 Photos of initial synthetic mixtures with different amount of H₃BTC.

Fig. S5 XRD patterns of a) NTS-0H-xh samples and b) NTS-61H-xh samples.

Fig. S6 TEM images of a) NTS-61H-1h, b) NTS-61H-2h, c) NTS-61H-3h, d) NTS-61H-6h, e) NTS-

61H-12h.

Fig. S7 TEM images of a) NTS-0H-2h, b) NTS-0H-3h, c) NTS-0H-6h, d) NTS-0H-12h.

Fig. S8 Respective yields of Ti in NTS-0H-xh and NTS-61H-xh.

Fig. S9 UV-vis spectra of a) NTS-0H-xh and b) NTS-61H-xh.

Fig. S10 XRD patterns of a) CTS-yd samples and b) NTS-yd samples.

Fig. S11 Relative crystallinity curves of CTS-yd samples and NTS-yd samples (the crystallinity of CTS-1 as the standard 100%).

Fig. S12 UV-vis spectra of CTS-yd samples and NTS-yd samples.

	S _{BET}	Smicro	S _{ext}	V _{total}	V _{micro}	V _{meso}	
	(m ² g ⁻¹) ^a	(m ² g ⁻¹) ^b	(m ² g ⁻¹) ^b	(cm ³ g ⁻¹) ^c	(cm ³ g ⁻¹) ^d	(cm ³ g ⁻¹) ^e	
CTS-1	385	278	108	0.24	0.13	0.11	
NTS-0H	397	264	133	0.28	0.12	0.16	
NTS-12H	391	221	169	0.46	0.12	0.34	
NTS-36H	393	224	169	0.39	0.12	0.27	
NTS-61H	358	230	128	0.24	0.13	0.11	
NTS-73H	344	218	126	0.20	0.12	0.08	

Table S1 Textural properties of CTS-1 and synthesized TS-1 samples.

^a Surface area was calculated from the nitrogen adsorption isotherm using the BET method.

^b S_{micro} (micropore area), S_{ext} (external surface area) were calculated using the BET method. ^c V_{total} (total pore volume) at P/P₀ = 0.99. ^d V_{micro} (micropore volume) was calculated using the t-plot method. ^e V_{meso} (mesopore volume) = V_{total} (total pore volume) - V_{micro}.

Crystallization	Synthetic	Si/Ti	Ti wt%	Time-gel.	Crystallization	Time-cry.	Ref.
modifier	method			(hours) ^d	temperature (°C)	(days) e	
H ₃ BTC	Hydrothermal	48.5 ^a		4.5	180	1	This
	method						work
(NH ₄) ₂ CO ₃	Hydrothermal	65-66 ^b		>2.5	160	3	1
	method						
(NH ₄) ₂ CO ₃	Hydrothermal	34 ^a			170	6	2
	method and						
	post-treatments						
(NH ₄) ₂ CO ₃	Hydrothermal	43.1 a		>4.5	170	6	3
	method and						
	post-treatments						
PAA	Hydrothermal	44 ^a		>0.5	170	7	4
	method						
IPA	Hydrothermal		3.08-9.92	>8.5	170	7	5
	method		c				
Triton X-100	Rotation	33.9 a		>8	170	4	6
	hydrothermal						
	method						

Table S2 Comparison of titanium-rich TS-1 synthesized by the hydrothermal methods.

^a The elemental compositions in the bulk were determined by ICP; ^b Molar ratio of Si to Ti was determined by energy dispersive X-ray spectroscopy (EDS); ^c The percentage content of titanium in the catalysts was determined by XRF method; ^d Time of gel preparation; ^e Time of hydrothermal crystallization.

References

- M. Shakeri and S. B. Dehghanpour, Rational synthesis of TS-1 zeolite to direct both particle size and framework Ti in favor of enhanced catalytic performance, *Microporous Mesoporous Mater.*, 2020, 298, 110066.
- 2. W. Fan, R.-G. Duan, T. Yokoi, P. Wu, Y. Kubota and T. Tatsumi, Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species, *J. Am. Chem. Soc.*, 2008, **130**, 10150-10164.
- 3. W. Jiao, Y. He, J. Li, J. Wang, T. Tatsumi and W. Fan, Ti-rich TS-1: A highly active catalyst for epoxidation of methallyl chloride to 2-methyl epichlorohydrin, *Appl. Catal., A*, 2015, **491**, 78-85.
- J. Wang, Y. Zhao, T. Yokoi, J. N. Kondo and T. Tatsumi, High-Performance Titanosilicate Catalyst Obtained through Combination of Liquid-Phase and Solid-Phase Transformation Mechanisms, *Chemcatchem*, 2014, 6, 2719-2726.
- 5. A. Wroblewska, J. Tolpa, D. Klosin, P. Miadlicki, Z. C. Koren and B. Michalkiewicz, The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of alpha-pinene, *Microporous Mesoporous Mater.*, 2020, **305**, 110384.
- T. Zhang, X. Chen, G. Chen, M. Chen, R. Bai, M. Jia and J. Yu, Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation, *J. Mater. Chem. A*, 2018, 6, 9473-9479.