Supporting information for

Vanadium-Doped NiS₂ Porous Nanosphere with High Selectivity and

Stability for Electroreduction of Nitrogen to Ammonia

Mingzhu Zhao,^{†#} Chengying Guo,^{†#} Lingfeng Gao, ^{*†} Xuan Kuang,[†] Hua Yang, [‡] Xiaojing Ma,[†] Chengqing Liu,[†] Xuejing Liu, ^{*†} Xu Sun ^{*†} and Qin Wei[†] [†]Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of

Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.

*Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China.

[#] Mingzhu Zhao and Chengying Guo contributed equally to this work.

Table of contents

1.Material Characterizations	1
2.XRD spectra of precursor	3
3. XRD spectra of pure NiS2	3
4. XPS survey of V _{0.2} Ni _{0.8} S ₂	4
5. SEM image of precursor	4
6. SEM images of pure NiS ₂	5
7. BET images of pure NiS ₂ and V _{0.2} Ni _{0.8} S ₂	5
8. EDS spectrum of V _{0.2} Ni _{0.8} S ₂	6
9. Gas-tight-compartment cell for NRR	6
10. Standard curve of NH ₃	6
11. UV-vis absorption spectrums of all contrast experiments	7
12. Standard curve of N ₂ H ₄	7
13. UV-vis absorption spectrum and corresponding N_2H_4 yield	8
14. Electrocatalytic activity comparison	8
15.Comprison with other reported NRR catalysts	9
Reference	10

1. Material characterizations

The crystal phase of the materials was analysed by an X-ray diffractometer (XRD, Rigaku D/max 2500). The morphologies of the samples were examined by Helios FIB SEM at 10.0 kV. Transmission electron microscopy (TEM, H-800 microscope, Hitachi, Japan) instruments carried with energy dispersive X-ray spectroscopy (EDS). X-ray photoelectron spectroscopy (XPS) was used for analyze the surface chemical composition of the materials.

1.1 Preparation of Ni(OH)₂ and vanadium doped Ni(OH)₂ (VNOH)

The vanadium doped Ni(OH)₂ (VNOH) was prepared successfully via a simple one-step hydrothermal method. Firstly, 1.4 mmol urea (CH₄N₂O) and 0.01 mmol trisodium citrate (C₆H₅O₇Na₃·2H₂O) were dissolved in 40 mL deionized water (DI) to form the mixed solution. Then, 0.24 mmol ammonium metavanadate (NH₄VO₃) and 0.96 mmol nickel nitrate (NiNO₃·6H₂O) (with the V/Ni ratio of about 1/4) were added into the solution to form pre-reaction liquid with the magnetic stirring, which was then transferred to 50 mL Teflon-lined stainless steel autoclave, and kept at 150 °C for 24 h. After it was naturally cooling to the room temperature, the as-prepared product was washed and dried under vacuum at 60 °C for about 6 h. For better comparison, a series VNOH precursors were synthesized according to the above mentioned method with the V/Ni ratios being 1/2, 1/5, 1/ 6 and 1/8, respectively. Meanwhile, the pure Ni(OH)₂ was synthesized as well via the above method, except that no NH₄VO₃ being added.

1.2 Preparation of NiS₂ and pure V-doped NiS₂

The pure NiS₂ and V-doped NiS₂ were synthesized via the high temperature annealing treatment, with thiourea (CH₄N₂S) being adopted as the sulfur source. In detail, 0.8 g CH₄N₂S and 50 mg Ni(OH)₂ or VNOH precursor were put at the upstream and downstream in the tube furnace, respectively. The nitrogen gas was adopted as the carrier gas. Then, the samples were annealed at 350 °C for 3 h.

1.3 Preparation of the electrode

The as synthesized NiS₂ or V-NiS₂ catalyst (5 mg) and the 0.5% Nafion solution (5 μ L) were dispersed in the 1 mL specially-made solution (V_{water}:V_{ethanol}=1:1), which was then ultrasonicated for 1 h to get a well dispersed catalyst ink. Then, 20 μ L of the homogeneous ink was loaded onto a carbon paper electrode with an area of 1×1 cm² and dried under ambient conditions.

1.4 Electrochemical measurements

The electrocatalytic nitrogen reduction was carried out using a three-electrode system, which include the prepared electrode, carbon rod and Ag/AgCl electrode, respectively. The whole experiments were in the two-compartment cell and separated by the Nafion 211 membrane under the ambient temperature and pressure. The electrochemical tests were carried out in the 0.1 M HCl

solution.

1.5 Determination of NH₃

The indophenol blue method was adopted to quantify the quantity of NH₃ in 0.1 M HCl solution via spectrophotometrically. To produce the calibration curve, for the first step, 1.0 µg mL⁻¹ NH₄⁺ solution in 0.1 M HCl was prepared used NH₄Cl as raw material, then, it was diluted to a series concentrations (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.6, 0.8, 0.9, 1.0 µg mL⁻¹) using 0.1 M HCl. Take 2 mL reference solution in glass bottle for next color reaction. Next, for the color reaction, 2 mL of 1.0 M NaOH solution (containing 5 wt % salicylic acid and 5 wt % sodium citrate) was added in to 2 mL reference solution in a glass bottle, followed by 1 mL of 0.05 M sodium hypochlorite and 200 µL of 1 wt % sodium nitroferricyanide was also added. After two hours under avoid light, the pure 0.1 M HCl solution was used as calibration. The absorbance at λ =655 nm was collected and plotted (**Figure S8**). The measurement method of the electrolyte of electrolysis for two hours was similar with the above method. The plotting of calibration curve in 0.1 M HCl condition is obtained as well.

1.6 Determination of hydrazine hydrate

The N₂H₄ concentration was recorded by the Watt and Chrisp method. The color developing agent was the mixture of of Para-(dimethylamino) benzaldehyde (5.99 g), HCl (12 M, 30 mL) and ethanol (300 mL). To get the standard curve, a series of 5 mL standard solutions (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 µg mL⁻¹) were added with the color reagent (5 mL) and then were placed in the dark environment (20 min). The background correction was carried out using the 0.1 M HCl solution. The absorbance of the reaction liquids was measured at λ =455 nm, and ploted the fitted curve, which showed a good linear relation of the absorbance with the N₂H₄ concentration (y=0.0426+0.710x, Figure S10).

1.7 Calculation of NH₃ yield

NH₃ yield= $(c_{NH3} \times V)/t \times m$

Where c_{NH3} is calculated NH₃ concentration, V is the volume of the electrolyte in the electrolytic tank (50 mL), t is reaction time (2 h), m is the catalyst mass (mg).

1.8 Calculation of Faradaic Efficiency (FE)

According to the standard curve, the concentrations of NH_3 and NH_4^+ were calculated as follows:

$FE=3 \times F \times c_{NH3} \times V/Q \times 1000000$

Where F is the Faradaic constant, Q is the quantity of applied electricity.

Figure S1. Schematic to illustrate the electrocatalytic setup of V-doped NiS₂ for NRR.

2. XRD spectra of precursor

Figure S2. XRD spectra of precursor.

3. XRD spectra of pure NiS₂

Figure S3. XRD spectra of pure NiS₂

4. XPS survey of $V_{0.2}Ni_{0.8}S_2$

Figure S4. Survey XPS spectral of $V_{0.2}Ni_{0.8}S_2$.

5. SEM image of precursor

Figure S5. SEM image of precursor.

6. SEM images of pure NiS₂

Figure S6. (A) Low- and (B) High-magnification SEM images of pure NiS₂.

7. BET images of pure NiS_2 and $V_{0.2}Ni_{0.8}S_2$

Figure S7. Nitrogen adsorption-desorption isotherms of (A) NiS₂ as well as (B) $V_{0.2}Ni_{0.8}S_2$. Pore size distribution profile of (C) NiS₂ and (D) $V_{0.2}Ni_{0.8}S_2$.

Materials	BET specific	BJH average pore	BJT pore volume /
	surface area / m ² g ⁻¹	diameter / nm	cm ³ g ⁻¹
V _{0.2} Ni _{0.8} S ₂	364.6	6.79	0.4159
NiS ₂	57.4	4.56	0.1236

Table S1. BET specific surface area and BJH pore volume of $V_{0.2}Ni_{0.8}S_2$ and NiS_2 .

8. EDS spectrum of $V_{0.2}Ni_{0.8}S_2$

Figure S8. EDS spectrum of $V_{0.2}Ni_{0.8}S_2$.

9. Gas-tight-two-compartment cell for NRR

Figure S9. Gas-tight-two-compartment cell for NRR.

10. Standard curve of NH₃

Figure S10. (A) UV-vis absorption spectrums of standard solutions with different NH_4^+ concentration. (B) Standard curve from the NH_4^+ concentration. (C) The chromogenic reaction of indophenol indicator with NH_4^+ of different concentration.

11. UV-vis absorption spectrums of all contrast experiments

Figure S11. UV-vis absorption spectrums of all contrast experiments including Ar as feed gas, clear carbon paper as working electrode and open circuit.

12. Standard curve of N₂H₄

Figure S12. (A) UV-vis curves of a serious of N_2H_4 concentrations after 20 min. (b) Standard curve for the estimation of the concentration of N_2H_4 . (C) The chromogenic reaction with corresponding N_2H_4 concentrations.

13. UV-vis spectrum and corresponding N₂H₄ yield

Figure S13. (A) UV-vis curves of $V_{0.2}Ni_{0.8}S_2$ at every potential to detect by-product. (B) Corresponding yield at all potentials, inset: the chromogenic reaction of every potential.

14. Electrocatalytic activity comparison

Material	NH ₃ yield/µg h ⁻¹ mg ⁻¹ cat.	FE
NiS_2	5.8	0.5 %
$V_{0.34}Ni_{0.66}S_2$	21.583	2.9 %

V _{0.17} Ni _{0.83} S ₂	38.259	6.7 %
V _{0.14} Ni _{0.86} S ₂	29.921	4.2 %
V _{0.11} Ni _{0.89} S ₂	24.795	3.5 %

Table S2. Summary of all catalysts for NRR at 0.1 M HCl solution.

15. Comparison with other reported NRR catalysts

Material	Electrolyte	NH ₃ yield/µg h ⁻¹ mg ⁻¹ _{cat.}	FE	Potential/V
This work	0.1 M HCl	47.64	9.70 %	
Mo ₂ N nanorod ¹	0.1 M HCl	78.4	4.50 %	-0.3
Defect-Rich	0.1 M Na ₂ SO ₄	29.28	8.34 %	-0.4
MoS ₂ Nanoflower ²				
Fe-Ni ₂ P nanosheets ³	0.1 M HCl	88.51	7.92 %	-0.3
Fe ₂ O ₃ nanorod ⁴	0.1 M Na ₂ SO ₄	6.78	7.69 %	-0.4
Mn ₃ O ₄ nanocube ⁵	0.1 M Na ₂ SO ₄	11.6	3.0 %	-0.8
Sn/SnS2 nanosheets6	0.1 M NaOH	23.8	6.5 %	
Nb ₂ O ₅ nanofiber ⁷	0.1 M HCl	43.6	9.26 %	-0.55
Co ₃ O ₄ @NCs ⁸	0.05 M H ₂ SO ₄	42.58	8.5 %	-0.2
P-CNTs ⁹	0.25 M LiClO ₄	24.4	12.5 %	
CaCoOx ¹⁰	0.5 M Na ₂ SO ₄	16.25	20.51	-0.3
CoS nano-flowers ¹¹	0.05 M H ₂ SO ₄	16.5	12.1	-0.15
Two-dimensional	0.1 M HCl	23.2	18.3	-0.1
vanadium carbide ¹²				
CrN nanocube ¹³	0.1 M HCl	31.11	16.6	-0.5
Boron, nitrogen and	0.05 M H ₂ SO ₄	41	14	-0.4
fluorine ternary-doped				
carbon ¹⁴				

Table S3. Comparison between $V_{0,2}Ni_{0,8}S_2$ with some other reported NRR catalysts.

References

- X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, Electrochemical N₂ fixation to NH₃ under ambient conditions: Mo₂N nanorod as a highly efficient and selective catalyst. *Chem Commun (Camb)*, 2018, 54, 8474-8477.
- X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, Boosted Electrocatalytic N₂ Reduction to NH₃ by Defect-Rich MoS₂ Nanoflower, *Adv. Energy Mater.*, 2018, 8.
- C. Guo, X. Liu, L. Gao, X. Kuang, X. Ren, X. Ma, M. Zhao, H. Yang, X. Sun and Q. Wei, Fedoped Ni₂P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions, *Appl. Catal. B-Environ.*, 2020, 263.
- 4. Z. Wang, K. Zheng, S. Liu, Z. Dai, Y. Xu, X. Li, H. Wang and L. Wang, Interconnected

porous composites electrode materials of Carbon@Vanadium nitride by directly absorbing VO₃, *ACS Sustain. Chem. Eng.*, 2019, **7**, 11754-11759.

- 5. X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, Mn₃O₄ Nanocube: An Efficient Electrocatalyst Toward Artificial N₂ Fixation to NH₃, *Small*, 2018, **14**, e1803111.
- P. Li, W. Fu, P. Zhuang, Y. Cao, C. Tang, A. B. Watson, P. Dong, J. Shen and M. Ye, Amorphous Sn/Crystalline SnS₂ Nanosheets via In Situ Electrochemical Reduction Methodology for Highly Efficient Ambient N₂ Fixation, *Small*, 2019, 15, e1902535.
- J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, Ambient N₂ fixation to NH₃ at ambient conditions: Using Nb₂O₅ nanofiber as a high-performance electrocatalyst, *Nano Energy*, 2018, **52**, 264-270.
- S. Luo, X. Li, B. Zhang, Z. Luo and M. Luo, ACS Appl Mater Interfaces, MOF-Derived Co₃O₄@NC with Core–Shell Structures for N₂ Electrochemical Reduction under Ambient Conditions, 2019, 11, 26891-26897.
- L. Yuan, Z. Wu, W. Jiang, T. Tang, S. Niu and J. Hu, Phosphorus-doping Activates Carbon Nanotubes for Efficient Electroreduction of Nitrogen to Ammonia, *Nano Res.*, 2020, 13, 1376–13810.
- X. Chen, K. Li, X. Yang, J. Lv, S. Sun, S. Li, D. Cheng, B. Li, Y. Li and H. Zang, Oxygen Vacancy Engineering of Calcium Cobaltate: A Nitrogen Fixation Electrocatalyst at Ambient Condition in Neutral Electrolyte, *Nano Res.* 2021, 14, 501–506.
- C. Li, R Xu, S Ma, Y Xie, K. Qu, H. Bao, W. Cai, Z. Yang, Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction, *Chen. Eng. J.*, 2020, 415, 129018.
- C. Zhang, D. Wang, Y. Wan, R. Lv, S. Li, B. Li,X. Zou, S. Yang, Vanadium carbide with periodic anionicvacancies for effective electrocatalyticnitrogen reduction, *Mater. Today*, 2020, 40, 15-18.
- Z. Ma, J. Chen, D. Luo, Thomas T., Richard D. and Adam S. Structural evolution of CrN nanocubeelectrocatalysts during nitrogen reductionreaction, *Nanoscale*, 2020, 12, 19276– 19283.
- Q. Zhang, F. Luo, Y. Ling, S. Xiao, M. Li, K. Qu, Y. Wang, Ji. Xu, W. Cai and Z. Yang. Identification of functionality of heteroatoms inboron, nitrogen and fluorine ternary-doped carbonas a robust electrocatalyst for nitrogen reductionreaction powered by rechargeable zinc–airbatteries, *J. Mater. Chem. A*, 2020, 8, 8430–8439.