Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Electronic Supplementary Information

Two Barium Fluoroiodate Crystals with Large Band Gap and

Birefringence

Liang Zhu,^{a,b,#} Minqiang Gai,^{a,#} Wenqi Jin,^{a,b} Yun Yang,^{a,b,*}

Zhihua Yang^{a,b} and Shilie Pan^{a,b,*}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical

Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and

Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of

Sciences, Beijing 100049, China.

*These authors contributed equally to this work.

*Corresponding author: slpan@ms.xjb.ac.cn.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	х	У	Z	U(eq)	BVS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba(1)	4045(1)	1622(1)	2601(1)	10(1)	2.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l(1)	7258(1)	1746(1)	1469(1)	8(1)	5.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I(2)	654(1)	1200(1)	3368(1)	11(1)	5.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(1)	6280(4)	112(5)	2006(5)	16(1)	2.33
O(3)1253(4)968(7)1695(5)23(1)2.07O(4)6721(4)1455(5)-714(5)15(1)2.17O(5)8816(4)331(5)1976(5)16(1)2.18F(1)2592(3)1902(5)4734(4)19(1)0.98F(2)5389(3)3425(4)897(4)14(1)1.00	O(2)	963(4)	-949(6)	4264(6)	22(1)	1.78
O(4)6721(4)1455(5)-714(5)15(1)2.17O(5)8816(4)331(5)1976(5)16(1)2.18F(1)2592(3)1902(5)4734(4)19(1)0.98F(2)5389(3)3425(4)897(4)14(1)1.00	O(3)	1253(4)	968(7)	1695(5)	23(1)	2.07
O(5)8816(4)331(5)1976(5)16(1)2.18F(1)2592(3)1902(5)4734(4)19(1)0.98F(2)5389(3)3425(4)897(4)14(1)1.00	O(4)	6721(4)	1455(5)	-714(5)	15(1)	2.17
F(1)2592(3)1902(5)4734(4)19(1)0.98F(2)5389(3)3425(4)897(4)14(1)1.00	O(5)	8816(4)	331(5)	1976(5)	16(1)	2.18
F(2) 5389(3) 3425(4) 897(4) 14(1) 1.00	F(1)	2592(3)	1902(5)	4734(4)	19(1)	0.98
	F(2)	5389(3)	3425(4)	897(4)	14(1)	1.00

Table S1. Fractional atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and bond valence sum (BVS) calculations for Bal₂O₅F₂. *U*(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Bal ₂ O ₅ F ₂						
Ba(1)-F(1)	2.790(4)	Ba(1)-O(1)	2.861(4)			
Ba(1)-F(1)#1	2.678(3)	Ba(1)-O(1)#3	2.711(4)			
Ba(1)-F(2)	2.746(3)	Ba(1)-O(3)	2.878(4)			
Ba(1)-F(2)#2	2.711(3)	Ba(1)-O(4)#2	3.114(4)			
Ba(1)-F(2)#4	2.723(3)	Ba(1)-O(4)#5	2.807(4)			
I(1)-O(1)	1.785(4)	I(2)-O(3)	1.772(4)			
I(1)-O(4)	1.781(4)	I(2)-O(5)#6	2.043(4)			
I(1)-O(5)	1.913(4)	I(1)-F(2)	2.289(3)			
I(2)-O(2)	1.789(4)	I(2)-F(1)	2.085(3)			
F(1)#1-Ba(1)-F(2)#2	155.04(11)	F(1)#1-Ba(1)-O(1)#3	69.24(12)			
F(2)#2-Ba(1)-O(1)#3	85.88(11)	F(1)#1-Ba(1)-F(2)#4	141.05(10)			
F(2)#2-Ba(1)-F(2)#4	62.46(11)	O(1)#3-Ba(1)-F(2)#4	146.26(11)			
F(1)#1-Ba(1)-F(2)	63.15(10)	F(2)#2-Ba(1)-F(2)	111.95(11)			
O(1)#3-Ba(1)-F(2)	72.06(12)	F(2)#4-Ba(1)-F(2)	128.67(7)			
F(1)#1-Ba(1)-F(1)	106.92(11)	F(2)#2-Ba(1)-F(1)	62.16(10)			
O(1)#3-Ba(1)-F(1)	73.68(12)	F(2)#4-Ba(1)-F(1)	80.87(10)			
F(2)-Ba(1)-F(1)	145.59(10)	F(1)#1-Ba(1)-O(4)#5	81.41(11)			
F(2)#2-Ba(1)-O(4)#5	122.81(10)	O(1)#3-Ba(1)-O(4)#5	149.56(12)			
F(2)#4-Ba(1)-O(4)#5	60.36(11)	F(2)-Ba(1)-O(4)#5	102.22(11)			
F(1)-Ba(1)-O(4)#5	108.86(11)	F(1)#1-Ba(1)-O(1)	105.50(12)			
F(2)#2-Ba(1)-O(1)	89.92(11)	O(1)#3-Ba(1)-O(1)	124.50(11)			
F(2)#4-Ba(1)-O(1)	70.13(11)	F(2)-Ba(1)-O(1)	58.64(11)			
F(1)-Ba(1)-O(1)	147.02(11)	O(4)#5-Ba(1)-O(1)	70.28(12)			
F(1)#1-Ba(1)-O(3)	65.96(12)	F(2)#2-Ba(1)-O(3)	114.78(11)			
O(1)#3-Ba(1)-O(3)	92.06(13)	F(2)#4-Ba(1)-O(3)	91.13(12)			
F(2)-Ba(1)-O(3)	129.07(11)	F(1)-Ba(1)-O(3)	55.02(11)			
O(4)#5-Ba(1)-O(3)	67.92(13)	O(1)-Ba(1)-O(3)	138.12(12)			
F(1)#1-Ba(1)-O(4)#2	113.07(11)	F(2)#2-Ba(1)-O(4)#2	55.78(10)			
O(1)#3-Ba(1)-O(4)#2	67.72(11)	F(2)#4-Ba(1)-O(4)#2	100.07(10)			
F(2)-Ba(1)-O(4)#2	56.24(10)	F(1)-Ba(1)-O(4)#2	107.03(10)			
O(4)#5-Ba(1)-O(4)#2	134.80(8)	O(1)-Ba(1)-O(4)#2	64.63(11)			
O(3)-Ba(1)-O(4)#2	157.25(12)	O(4)-I(1)-O(5)	96.71(18)			
O(4)-I(1)-O(1)	100.17(19)	O(4)-I(1)-F(2)	83.93(16)			
O(1)-I(1)-O(5)	95.57(19)	O(5)-I(1)-F(2)	179.19(16)			
O(1)-I(1)-F(2)	83.82(15)	O(3)-I(2)-O(5)#6	92.10(19)			
O(3)-I(2)-O(2)	101.1(2)	O(3)-I(2)-F(1)	85.12(17)			
O(2)-I(2)-O(5)#6	87.66(18)	O(5)#6-I(2)-F(1)	175.35(15)			
Symmetry	transformations used	d to generate equivaler	nt atoms:			
#1 x,-y+1/2,z-1/2;		#2 x,-y+1/2,z+1/2;				
#3 -x+1,y+1/2,-z+1/2). -/	#4 -x+1,y-1/2,-z+1/2;				
#5 -x+1,-y,-z;		#6 x-1,y,z;				
#7 x+1,y,z						

Table S2. Selected Bond lengths (Å) and angles (deg.) for $Bal_2O_5F_2$.

Atom	х	У	Z	U(<i>eq</i>)	BVS
Ba1	5000	2606(1)	608(1)	11(1)	2.01
11	0	3050(1)	1677(1)	10(1)	4.98
01	2161(5)	4644(4)	1454(1)	21(1)	2.12
F1	7602(5)	5000	0	13(1)	1.14
F2	0	1974(5)	842(1)	20(1)	1.15
F3	0	4321(6)	2427(2)	36(1)	1.24

Table S3. Fractional atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^2$ ×10³) and bond valence sum (BVS) calculations for BalO₂F₃. *U*(eq) is defined as one-third of the trace of the orthogonalized *U*_{ij} tensor.

BalO ₂ F ₃						
Ba(1)-F(1)	2.6512(19)	Ba(1)-O(1)	2.965(3)			
Ba(1)-F(1)#1	2.6512(19)	Ba(1)-O(1)#5	2.965(3)			
Ba(1)-F(1)#2	2.6545(17)	Ba(1)-O(1)#6	3.048(3)			
Ba(1)-F(1)#3	2.6545(17)	Ba(1)-O(1)#7	3.048(3)			
Ba(1)-F(2)	3.2384(9)	Ba(1)-F(2)#4	2.824(3)			
Ba(1)-F(2)#8	3.2384(9)	I(1)-O(1)	1.779(3)			
I(1)-F(2)	2.060(3)	I(1)-O(1)#9	1.779(3)			
I(1)-F(3)	1.924(4)	F(1)#1-Ba(1)-F(1)	76.86(10)			
F(1)#1-Ba(1)-F(1)#2	73.486(14)	F(1)-Ba(1)-F(1)#2	115.283(17)			
F(1)#1-Ba(1)-F(1)#3	115.283(17)	F(1)-Ba(1)-F(1)#3	73.486(14)			
F(1)#2-Ba(1)-F(1)#3	69.81(10)	F(1)#1-Ba(1)-F(2)#4	62.70(5)			
F(1)-Ba(1)-F(2)#4	62.70(5)	F(1)#2-Ba(1)-F(2)#4	135.57(5)			
F(1)#3-Ba(1)-F(2)#4	135.57(5)	F(1)#1-Ba(1)-O(1)#5	118.85(6)			
F(1)-Ba(1)-O(1)#5	74.26(7)	F(1)#2-Ba(1)-O(1)#5	166.75(6)			
F(1)#3-Ba(1)-O(1)#5	106.23(7)	F(2)#4-Ba(1)-O(1)#5	56.20(7)			
F(1)#1-Ba(1)-O(1)	74.27(7)	F(1)-Ba(1)-O(1)	118.85(6)			
F(1)#2-Ba(1)-O(1)	106.23(7)	F(1)#3-Ba(1)-O(1)	166.75(6)			
F(2)#4-Ba(1)-O(1)	56.20(7)	O(1)#5-Ba(1)-O(1)	74.65(11)			
F(1)#1-Ba(1)-O(1)#6	114.81(7)	F(1)-Ba(1)-O(1)#6	167.92(7)			
F(1)#2-Ba(1)-O(1)#6	72.82(6)	F(1)#3-Ba(1)-O(1)#6	102.62(6)			
F(2)#4-Ba(1)-O(1)#6	118.66(8)	O(1)#5-Ba(1)-O(1)#6	96.36(9)			
O(1)-Ba(1)-O(1)#6	64.29(5)	F(1)#1-Ba(1)-O(1)#7	167.92(7)			
F(1)-Ba(1)-O(1)#7	114.81(7)	F(1)#2-Ba(1)-O(1)#7	102.62(6)			
F(1)#3-Ba(1)-O(1)#7	72.82(6)	F(2)#4-Ba(1)-O(1)#7	118.66(8)			
O(1)#5-Ba(1)-O(1)#7	64.29(5)	O(1)-Ba(1)-O(1)#7	96.36(9)			
O(1)#6-Ba(1)-O(1)#7	53.37(11)	F(1)#1-Ba(1)-F(2)#8	140.24(8)			
F(1)-Ba(1)-F(2)#8	63.46(8)	F(1)#2-Ba(1)-F(2)#8	124.93(7)			
F(1)#3-Ba(1)-F(2)#8	56.87(7)	F(2)#4-Ba(1)-F(2)#8	95.09(5)			
O(1)#5-Ba(1)-F(2)#8	49.37(8)	O(1)-Ba(1)-F(2)#8	122.32(8)			
O(1)#6-Ba(1)-F(2)#8	104.71(8)	O(1)#7-Ba(1)-F(2)#8	51.36(8)			
F(1)#1-Ba(1)-F(2)	63.46(8)	F(1)-Ba(1)-F(2)	140.24(7)			
F(1)#2-Ba(1)-F(2)	56.87(7)	F(1)#3-Ba(1)-F(2)	124.93(7)			
F(2)#4-Ba(1)-F(2)	95.09(5)	O(1)#5-Ba(1)-F(2)	122.32(8)			
O(1)-Ba(1)-F(2)	49.37(8)	O(1)#6-Ba(1)-F(2)	51.36(8)			
O(1)#7-Ba(1)-F(2)	104.71(8)	F(2)#8-Ba(1)-F(2)	155.86(11)			
O(1)#9-I(1)-F(3)	91.51(12)	O(1)#9-I(1)-O(1)	100.64(19)			
O(1)#9-I(1)-F(2)	85.03(11)	O(1)-I(1)-F(3)	91.51(12)			
F(3)-I(1)-F(2)	174.57(15)	O(1)-I(1)-F(2)	85.03(11)			
Symmetry transformations used to generate equivalent atoms:						
#1 -x+1,-y+1,-z;	#2 x-1/2,y-1/2,z;	#3 -x+3/2,-y+1/2,-z;	#4 x+1/2,y+1/2,z;			
#5 -x+1,y,z;	#6 -x+1/2,y-1/2,z;	#7 x+1/2,y-1/2,z;	#8 x+1,y,z;			
#9 -x,y,z;	#10 x-1/2,y+1/2,z;	#11 x-1,y,z				

Table S4. Selected Bond lengths (Å) and angles (deg.) for $BalO_2F_3$.

Compounds	Constitutional	Birefringence	Band gap	References
	unit	@ 1064 (cal.)	(cal.)	
Cs(IOF ₄)	(IOF ₄)⁻	—	_	1
$SbF_5IF_3O_2$	(IO ₂ F ₄)⁻	_	_	2
$Cs_3(IO_2F_2)_3 \cdot H_2O$	$(IO_2F_2)^-$	0.093	4.37 eV	3
$[N(CH_3)_4][IO_2F_2]$	(IO ₂ F ₂) ⁻	_	—	4
$(N(CH_3)_4)_2(IO_2F_2)(HF_2)$	$(IO_2F_2)^-$	_	—	4
(C(NH ₂) ₃)(IF ₂ O ₂)	(IO ₂ F ₂) ⁻	_	—	5
$Cs(IO_2F_2)_2 \cdot H_5O_2$	(IO ₂ F ₂) ⁻	0.086	3.77 eV	3
NaIO ₂ F ₂	$(IO_2F_2)^-$	_	—	6
KIO ₂ F ₂	(IO ₂ F ₂) ⁻	0.06	—	7
RbIO ₂ F ₂	$(IO_2F_2)^-$	0.058	4.28 eV	8
$CsIO_2F_2$	(IO ₂ F ₂) ⁻	0.046	4.15 eV	3
$Ba(IO_2F_2)_2$	(IO ₂ F ₂) ⁻	0.092	3.99 eV	9
BalO ₂ F ₃	(IO ₂ F ₂) ⁻	0.133	4.17 eV	Title compound
$SrI_2O_5F_2$	(IO ₃ F) ²⁻	0.180	3.68 eV	9
Bal ₂ O ₅ F ₂	(IO ₃ F) ²⁻	0.164	3.95 eV	Title compound

Table S5. The investigation of anionic units in fluoroiodates.

Figure S1. Experimental and calculated powder XRD patterns of ${\sf Bal_2O_5F_2}$ (a) and ${\sf BalO_2F_3}$ (b).

Figure S3. (a) 2D $[BaF]_{\infty}$ double layers A of $BaI_2O_5F_2$; (b) 2D $[BaF]_{\infty}$ double layers B of $BaIO_2F_3$; (c) 1D Ba-O-F chains of $Ba(IO_2F_2)_2$.

Figure S4. IR diffuse reflectance spectra of $Bal_2O_5F_2$ (a) and $BalO_2F_3$ (b).

Figure S5. UV–vis–NIR diffuse-reflectance spectra of $Bal_2O_5F_2$ (a) and $BalO_2F_3$ (b).

Figure S8. Arrangement of $[IO_2F_2]^{2-}$ anions in $BaIO_2F_3$ (a) and $Ba(IO_2F_2)_2$ (b), the purple arrows indicate the directions of $[IO_2F_2]^{2-}$ polyhedral.

Figure S9. Calculated refractive index dispersion curves of $BaI_2O_5F_2$ and $BaIO_2F_3$.

Reference

- 1. R. R. Ryan and L. B. Aspery, The crystal structure of CsIOF₄, *Acta Crystallogr.*, 1972, **28**, 979-981.
- 2. A. J. Edwards and A. A. K. Hana, Fluoride crystal structures. Part 34. Antimony pentafluoride–iodine trifluoride dioxide, *Dalton Trans.*, 1980, **9**, 1734-1736.
- 3. M. Zhang, C. Hu, T. Abudouwufu, Z. H. Yang and S. L.Pan, Functional materials design via structural regulation originated from ions introduction: A study case in cesium iodate system, *Chem. Mater.*, 2018, **30**, 1136-1145.
- M. Gerken, J. P. Mack, G. J. Schrobilgen and R. J. Suontamo, Synthesis, vibrational and NMR spectroscopic characterization of [N(CH₃)₄][IO₂F₂] and X-ray crystal structure of [N(CH₃)₄]₂[IO₂F₂][HF₂], *J. Fluorine Chem.*, 2004, **125**, 1663-1670.
- D. Fischer, T. M. Klapötke and J. Stierstorfer, Synthesis and characterization of guanidinium difluoroiodate, [C(NH₂)₃]⁺[IF₂O₂]⁻ and its evaluation as an ingredient in agent defeat weapons, *Z. Anorg. Allg. Chem.*, 2011, 637, 660-665.
- 6. J. P. Laval and N. J. Boukharrata, Sodium iodine(V) oxyfluoride, NaIO₂F₂, *Acta Crystallogr. C*, 2008, **64**, i47-i49.
- 7. L. Helmholz and M. T. Roger, The crystal structure of potassium fluoroiodate, KIO₂F₂, J. Am. Chem. Soc., 1940, **62**, 1537-1542.
- Q. Wu, H. M. Liu, F. C. Jiang, L. Kang, L. Yang, Z. S. Lin, Z. G. Hu, X. G. Chen, X. G. Meng and J. G. Qin, RbIO₃ and RbIO₂F₂: Two promising nonlinear optical materials in Mid-IR region and influence of partially replacing oxygen with fluorine for improving laser damage threshold, *Chem. Mater.*, 2016, **28**, 1413-1418.
- M. Q. Gai, T. H. Tong, Y. Wang, Z. H. Yang and S. L.Pan, New Alkaline-earth metal fluoroiodates exhibiting large birefringence and short ultraviolet cutoff edge with highly polarizable (IO₃F)^{2–} units, *Chem. Mater.*, 2020, **32**, 5723-5728.