Supplementary Information

Centrosymmetric RbSnF₂NO₃ vs. Noncentrosymmetric

$Rb_2SbF_3(NO_3)_2$

Lei Wang, [†] Hongmei Wang, [†] Die Zhang, [†] Daojiang Gao, [†] Jian Bi, [†] Ling Huang, ^{*†} and Guohong Zou^{*‡}

[†] College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China.

[‡]College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

E-mail: huangl026@sina.com; zough@scu.edu.cn

Table of contents

Sections	Titles	Pages
Sections S1	Materials and Methods (Instrumentations and Computational Details)	S3
Table S1	Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$) for RbSnF ₂ NO ₃ .	S5
Table S2	Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$) for Rb ₂ SbF ₃ (NO ₃) ₂ .	S6
Table S3	Selected Bond lengths (Å) and angles (deg) for $RbSnF_2NO_3$.	S7
Table S4	Selected Bond lengths (Å) and angles (deg) for Rb ₂ SbF ₃ (NO ₃) ₂ .	S8
Table S5	Calculation of dipole moment for NO ₃ , RbO ₆ F ₅ , RbO ₆ F ₄ , RbO ₇ F ₄ , RbO ₈ F ₃ , SbO ₂ F ₃ ,	S9
	SbO_3F_3 polyhedra and net dipole moment for a unit cell in $Rb_2SbF_3(NO_3)_2$ (D = Debyes).	
Fig. S1	TGA curves of (a) $RbSnF_2NO_3$ and (b) $Rb_2SbF_3(NO_3)_2$ under N_2 atmosphere.	S10
Fig. S2	XRD patterns of the residues of TGA for (a) RbSnF ₂ NO ₃ and (b) Rb ₂ SbF ₃ (NO ₃) ₂ .	S10
Fig. S3	The IR spectra of (a) RbSnF ₂ NO ₃ and (b) Rb ₂ SbF ₃ (NO ₃) ₂ .	S10
Fig. S4	Calculated band structures of (a) $RbSnF_2NO_3$ and (b) $Rb_2SbF_3(NO_3)_2$.	S11
Fig. S5	The theoretical calculations of RbSnF ₂ NO ₃ .	S11
References		S12

Section S1. Materials and Methods

Instruments The diffraction data acquisition of compounds $RbSnF_2NO_3$ and $Rb_2SbF_3(NO_3)_2$ were implemented by graphite-monochromated Mo K α radiation (λ =0.71073 Å) integrating with the SAINT program on a Bruker D8 Venture detector at a temperature of 150(2) K. SHELX-2014 program was applied to establish the crystal structures by direct method, and structures were further refined on F^2 through the full-matrix least-squares method. ¹ The program PLATON was used to examine possible additional symmetry and no higher symmetry could be found.² One possession disorder oxygen atom exits in Rb₂SbF₃(NO₃)₂, which is common for the single crystals. The crystallographic parameters as well as refinement information for two title compounds were given in table 1. The other structural data including the atomic coordinates, the selected bond distances (Å) and angles (deg.) were given in Tables S1-S4. The powder X-ray diffraction patterns to confirm the purity of Rb₂SbF₃(NO₃)₂ and RbSnF₂NO₃ powder samples were acquired on an automated Smart lab diffractometer equipped with Cu-K α radiation (λ =1.540598 Å). The measuring parameters are set as: angular ranging from 5° to 70° (2 θ) with a fixed counting time of 0.2 s and a step size of 0.08° at room temperature. The IR transmission of title compounds were carried out at room temperature in the 400-4000 cm⁻¹ wavenumber range on a Vertex 70 Fourier transform infrared (FT-IR) spectrometer. KBr was used as background and the powdery specimens were equally mixed with dehydrated KBr and ground into fine powder with a mass proportion of 1:100, and then prepared samples were put into transparent slices for the measurements. The thermal behaviors of the ground polycrystalline samples were conducted with a NETZSCH SET-449C instrument. Approximate 14-17 mg of crystal powders were enclosed into Al₂O₃ crucibles and heated in a temperature range of 30-800 °Cwith the heating rate of 10 °C/min under a constant flow of nitrogen gas. A UV-2600, Shimadzu spectrophotometer equipped with an integrating sphere at 185-800 nm was used to test optical diffuse-reflectance spectra, which can determine the cut-off edge of the title compounds. The reflectance spectra were carried out at ambient temperature using dried $BaSO_4$ plate as a 100% reference comparison standard. The reflection spectra were converted into absorption spectra through the Kubelka-Munk function a/S $= (1-R)^2/2R$, in this equation, a is the absorption coefficient, S stands for the scattering coefficient that is essentially wavelength-independent when the particle size is larger than 5 μ m, and R is the reflectance. The powder SHG effects of the compound Rb₂SbF₃(NO₃)₂ were performed by employing the method of Kurtz-Perry under a 1064 nm laser, which were radiated by a Qswitched Nd:YAG laser at ambient temperature.³ Since the powder SHG effect is definitely related to particle size, the samples of Rb₂SbF₃(NO₃)₂ and a reference of KH₂PO₄ (KDP) were ground, then sieved into the following six discrete particle size ranges: 25-45, 45-58, 58-75, 75-106, 106-150, 150-212 µm, which were loaded between glass slides and then pressed into respective sample rubber rings. Rb₂SbF₃(NO₃)₂ and KDP powders were sieved into the same particle size to assume the SHG effect. A photomultiplier tube was used to collect the signal of the frequency-doubled output emitted from the microcrystalline samples. The first-principles calculations for Rb₂SbF₃(NO₃)₂ and RbSnF₂NO₃ crystals were based on their single crystal structure data. The electronic structures, optical properties and density of states (DOS) were obtained by the plane-wave pseudopotential method implemented in the CASTEP package on the basis of the density functional theory (DFT).⁴ Meanwhile the Perdew-Burke-Brnzerhof (PBE) functional was chosen to treat the exchange-correlation potential within the generalized gradient approximation (GGA).⁵ The cutoff energy for plane wave functions were set as 850 eV for both compounds and the numerical integration of the Brillouin zones were performed using $3 \times 5 \times 3$ and 1×3×3 Monkhorst-Pack k-point for Rb₂SbF₃(NO₃)₂ and RbSnF₂NO₃, respectively. The employed convergence benchmark was 1.0×10⁻⁶ eV/atom. The connections between the valence electrons and the ionic cores were demonstrated using optimized norm-conserving pseudopotentials in Kleinman–Bylander form.⁶

atom	x	у	Ζ	Ueq (Å ²)	BVS
Sn1	0.535133 (19)	0.5	0.28349 (4)	0.02474 (11)	1.9907
Rb1	0.81330 (3)	0.5	0.31182 (6)	0.02688 (13)	1.2153
F1	0.66970 (16)	0.5	0.4958 (4)	0.0284 (5)	1.1036
F2	0.5	0.7344 (4)	0.5	0.0279 (5)	1.1645
01	0.64698 (15)	-0.2007 (4)	0.0576 (3)	0.0326 (5)	1.9762
02	0.5839 (2)	0.0	0.2427 (5)	0.0321 (7)	1.9151
N1	0.6261 (2)	0.0	0.1176 (5)	0.0244 (7)	4.8768

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacementparameters ($Å^2$) for RbSnF2NO3.

parameters (11) 101 102501 3(11	03)2.			
atom	x	у	Ζ	Ueq (Å ²)	BVS
Sb1	0.6116 (4)	0.7624 (4)	0.2975 (3)	0.0290 (9)	3.023
Sb2	0.7810 (3)	0.4707 (4)	0.8247 (3)	0.0264 (8)	2.911
Rb1	0.3555 (6)	0.7084 (6)	0.5102 (4)	0.0323 (12)	1.298
Rb2	0.6303 (6)	1.1788 (7)	0.0681 (4)	0.0347 (13)	1.185
Rb3	1.0507 (5)	0.4555 (7)	0.6505 (4)	0.0302 (11)	1.220
Rb4	1.0574 (5)	0.4659 (7)	1.1318 (4)	0.0313 (11)	1.171
F1	0.825 (3)	0.291 (4)	0.717 (2)	0.036 (7)	1.096
F2	0.818 (3)	0.281 (4)	0.944 (3)	0.035 (7)	1.149
F3	0.957 (3)	0.522 (4)	0.870 (3)	0.035 (7)	1.140
F4	0.478 (4)	0.824 (5)	0.158 (3)	0.046 (9)	1.068
F5	0.510 (3)	0.875 (4)	0.388 (3)	0.040 (8)	1.218
F6	0.674 (3)	1.007 (4)	0.292 (2)	0.033 (7)	1.283
N1	1.117 (6)	-0.087 (7)	0.659 (5)	0.045 (11)	4.931
N2	0.742 (5)	0.683 (6)	1.055 (4)	0.034 (9)	5.162
N3	0.766 (5)	0.713 (6)	0.573 (4)	0.034 (9)	5.059
N4	0.417 (6)	0.434 (8)	0.233 (5)	0.049 (12)	5.727
01	1.126 (5)	-0.174 (6)	0.571 (4)	0.045 (11)	2.151
02	1.142 (5)	-0.164 (6)	0.762 (4)	0.046 (10)	1.859
03	1.078 (5)	0.069 (6)	0.648 (5)	0.064 (14)	1.986
O4	0.832 (4)	0.664 (5)	1.008 (3)	0.034 (9)	2.079
05	0.654 (4)	0.580 (5)	1.030 (4)	0.040 (9)	2.011
O6	0.746 (4)	0.814 (5)	1.120 (4)	0.041 (10)	2.080
07	0.676 (4)	0.610 (5)	0.544 (4)	0.041 (10)	1.833
08	0.776 (4)	0.841 (5)	0.503 (3)	0.038 (10)	1.943
09	0.846 (4)	0.697 (5)	0.666 (3)	0.034 (8)	2.226
O10	0.439 (6)	0.530 (8)	0.317 (5)	0.079 (14)	2.341
011	0.320 (7)	0.388 (9)	0.175 (7)	0.096 (18)	2.255
012	0.520 (12)	0.362 (14)	0.239 (10)	0.071 (19)	1.968

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for Rb₂SbF₃(NO₃)₂.

Sn1-F1 Sn1-F2 $Sn1-F2^{i}$ Sn1-O2 $Rb1-F1^{iii}$	2.027 (2) 2.2001 (14) 2.2001 (14) 2.8416 (1) 2.9960 (11) 2.9883 (12)	Rb1—O2 ⁱⁱ Rb1—O1 ^{vi} Rb1—O1 ^{vii} Rb1—O1 ^{viii} Rb1—O1 ^{ix}	2.967 (3) 3.092 (2) 2.964 (2) 3.092 (2)
Sn1—F2 Sn1—F2 ⁱ Sn1—O2 Rb1—F1 ⁱⁱⁱ	2.2001 (14) 2.2001 (14) 2.8416 (1) 2.9960 (11) 2.9883 (12)	Rb1—O1 ^{vi} Rb1—O1 ^{vii} Rb1—O1 ^{viii} Rb1—O1 ^{ix}	3.092 (2) 2.964 (2) 3.092 (2)
Sn1—F2 ⁱ Sn1—O2 Rb1—F1 ⁱⁱⁱ	2.2001 (14) 2.8416 (1) 2.9960 (11) 2.9883 (12)	Rb1—O1 ^{vii} Rb1—O1 ^{viii} Rb1—O1 ^{ix}	2.964 (2) 3.092 (2)
Sn1—O2 Rb1—F1 ⁱⁱⁱ	2.8416 (1) 2.9960 (11) 2.9883 (12)	Rb1—O1 ^{viii} Rb1—O1 ^{ix}	3.092 (2)
Rb1—F1 ⁱⁱⁱ	2.9960 (11) 2.9883 (12)	Rb1—O1 ^{ix}	20(1(2))
	2.9883 (12)		2.964 (2)
Rb1—F2 ^{iv}		O2—N1	1.266 (5)
O1—N1 ^{vii}	1.246 (3)	F2—Sn1—F1	84.74 (6)
F2 ⁱ —Sn1—F1	84.74 (6)	O1 ^{viii} —Rb1—F2 ^{iv}	76.73 (4)
F2 ⁱ —Sn1—F2	70.32 (10)	O1 ^{vii} —Rb1—F2 ^v	116.77 (6)
F1 ⁱⁱ —Rb1—F1	75.37 (5)	O1 ^{vi} —Rb1—F2 ^{iv}	96.17 (4)
F1 ⁱⁱ —Rb1—F1 ⁱⁱⁱ	128.81 (8)	O1 ^{vi} —Rb1—F2 ^v	76.73 (4)
F2 ^{iv} —Rb1—F1 ⁱⁱⁱ	108.68 (6)	O1 ^{viii} —Rb1—O2 ⁱⁱ	135.91 (7)
F2 ^v —Rb1—F1 ⁱⁱⁱ	56.91 (6)	O1 ^{vii} —Rb1—O2 ⁱⁱ	129.85 (6)
$F2^{iv}$ —Rb1— $F2^{v}$	57.40 (8)	O1 ^{vii} —Rb1—O1 ^{ix}	66.15 (9)
O2 ⁱⁱ —Rb1—F1 ⁱⁱ	65.79 (4)	O1 ^{vii} —Rb1—O1 ^{vi}	70.90 (6)
O2 ⁱⁱ —Rb1—F1 ⁱⁱⁱ	65.79 (4)	O1 ^{viii} —Rb1—O1 ^{ix}	70.90 (6)
O2 ⁱⁱ —Rb1—F1	72.57 (7)	Rb1—F1—Sn1	111.44 (10)
O2 ⁱⁱ —Rb1—F2 ^{iv}	59.25 (5)	Rb1 ⁱⁱⁱ —F1—Sn1	103.53 (5)
O1 ^{ix} —Rb1—F1 ⁱⁱ	72.37 (6)	Rb1 ⁱⁱ —F1—Rb1	104.63 (5)
O1 ^{vii} —Rb1—F1 ⁱⁱⁱ	72.37 (6)	Sn1 ^x —F2—Sn1	109.68 (10)
O1 ^{vi} —Rb1—F1 ⁱⁱⁱ	93.43 (6)	Rb1 ^{xi} —F2—Sn1 ^x	99.432 (9)
O1 ^{vii} —Rb1—F1 ⁱⁱ	132.97 (6)	Rb1 ⁱⁱ —F2—Sn1	99.432 (9)
O1 ^{vi} —Rb1—F1 ⁱⁱ	133.83 (6)	Rb1 ^{xi} —F2—Sn1	112.905 (9)
O1 ^{viii} —Rb1—F1 ⁱⁱ	93.43 (6)	Rb1 ⁱⁱ —F2—Rb1 ^{xi}	122.60 (8)
O1 ^{ix} —Rb1—F1 ⁱⁱⁱ	132.97 (6)	N1—O2—Rb1 ⁱⁱⁱ	123.4 (2)
O1 ^{vi} —Rb1—F1	142.04 (6)	N1 ^{vii} —O1—Rb1 ^{viii}	97.79 (18)
O1 ^{vii} —Rb1—F1	71.15 (6)	O1 ^{vii} —N1—O2	119.53 (16)
O1 ^{ix} —Rb1—F2 ^v	167.04 (5)	01—N1—02	119.53 (16)
O1 ^{ix} —Rb1—F2 ^{iv}	116.77 (6)	01-N1-01 ^{vii}	120.9 (3)

Table S3. Selected Bond lengths (Å) and angles (deg) for RbSnF₂NO₃.

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y+1/2, -z+1; (iii) -x+3/2, y-1/2, -z+1; (iv) -x+3/2, -y+3/2, -z+1; (v) x+1/2, y-1/2, z; (vi) x, y+1, z; (vii) -x+3/2, -y+1/2, -z; (viii) x, -y, z; (ix) -x+3/2, y+1/2, -z; (x) -x+1, y, -z+1; (xi) x-1/2, y+1/2, z.

Table 5 ii Selected Dolla len	Guis (11) and angles ((405) 101 1(02001 3(1103)2.	
Sb2—F3	1.93 (3)	Rb2—F2 ^{xii}	2.92 (3)
Sb2—F2	1.94 (3)	Rb2—O12 ^{viii}	2.92 (11)
Sb2—F1	1.97 (3)	Rb2—O6 ^{xiii}	2.99 (4)
Sb2—O4	2.50 (4)	Rb2—O2 ^{xiv}	3.01 (5)
Sb1—F5	1.92 (3)	F2—Rb2 ⁱⁱⁱ	2.92 (3)
Sb1—F4	1.94 (3)	F2—Rb4 ⁱⁱ	2.96 (3)
Sb1—F6	1.95 (3)	F3—Rb4 ⁱ	3.30 (3)
Rb3—O3	2.88 (4)	O9—Rb4 ⁱ	3.05 (4)
Rb3—O9	2.94 (4)	O4—N2	1.26 (6)
Rb3—O1 ^v	2.95 (4)	O4—Rb4 ⁱ	3.19 (4)
Rb3—O2 ^{viiii}	3.16 (5)	O1—N1	1.23 (7)
Rb3—N1 ^{viii}	3.47 (5)	O1—Rb3 ^{vii}	2.95 (4)
Rb4—O11 ^{ix}	2.89 (7)	O8—N3	1.27 (5)
Rb4—F2 ⁱ	2.96 (3)	O8—Rb1 ^{vi}	3.07 (4)
Rb4—O2 ⁱ	2.96 (5)	O2—N1	1.29 (7)
Rb4—F3 ⁱⁱ	3.30 (3)	N4—O11	1.17 (8)
Rb4—O3 ⁱ	3.36 (6)	N4—O10	1.18 (7)
Rb4—N1 ⁱ	3.49 (6)	N4—O12	1.24 (12)
Rb1—F5	2.78 (3)	N1—O3	1.23 (7)
Rb1—F6 ^{iv}	2.82 (3)	O3—Rb4 ⁱⁱ	3.36 (6)
Rb1—F1 ^{vi}	2.93 (3)	O3—Rb3 ^{vii}	3.48 (6)
Rb1—Sb1 ^{iv}	3.952 (6)	F1 ^{vi} —Rb1—Sb1 ^{iv}	128.5 (6)
F3—Sb2—F2	86.2 (13)	$F5^{iv}$ —Rb1—Sb1 ^{iv}	27.8 (7)
F3—Sb2—F1	84.8 (14)	O7—Rb1—Sb1 ^{iv}	79.7 (6)
F2—Sb2—F1	84.9 (13)	F4 ^{xi} —Rb2—F6	164.8 (11)
F2—Sb2—Rb3	106.5 (10)	F4 ^{xi} —Rb2—F2 ^{xii}	68.5 (10)
Rb2 ⁱⁱⁱ —Sb2—Rb1 ^{iv}	105.17 (13)	O9—N3—O8	119 (5)
F5—Sb1—F4	85.6 (15)	O7—N3—O8	119 (4)
F5—Sb1—F6	82.8 (14)	F4—Sb1—Rb3 ^v	122.4 (12)
F4—Sb1—F6	87.4 (14)	O3—Rb3—O2 ^{viii}	150.3 (14)

Table S4. Selected Bond lengths (Å) and angles (deg) for Rb₂SbF₃(NO₃)₂.

Symmetry codes: (i) -x+2, y+1/2, -z+2; (ii) -x+2, y-1/2, -z+2; (iii) x, y-1, z+1; (iv) -x+1, y-1/2, -z+1; (v) -x+2, y+1/2, -z+1; (vi) -x+1, y+1/2, -z+1; (vii) -x+2, y-1/2, -z+1; (viii) x, y+1, z; (ix) x+1, y, z+1; (x) x-1, y+1, z; (xi) -x+1, y+1/2, -z; (xii) x, y+1, z-1; (xiii) x, y, z-1; (xiv) -x+2, y+3/2, -z+1; (xv) x+1, y-1, z; (xvi) x, y-1, z; (xvii) -x+2, y-3/2, -z+1; (xviii) -x+1, y-1/2, -z; (xix) x-1, y, z-1; (xx) x, y, z+1.

		Rb ₂ SbF ₃ (NO ₃) ₂	2		
Polar unit (a	Dipole moment (D)				
unit cell)	x-component	y-component	z-component	total magnitude	
NO ₃	0.513648436	0.234558814	0.191112285	0.596134598	
	0.108485631	-0.157171827	0.081992262	0.207833699	
	-0.108485631	-0.157171827	-0.081992262	0.207833699	
	0.227026782	-0.619199226	-0.5539297	0.861270546	
	-0.504323787	0.234173996	-0.191065945	0.587950795	
	0.862960812	0.978223436	2.826191867	3.112713113	
	-0.153060783	-0.557626404	0.479223504	0.751019291	
	-0.937774147	1.031641798	-2.95170051	3.264389844	
total	0.008477313	0.98742876	-0.118176237	0.994511	
SbO ₂ F ₃	-18.00575606	4.576773595	-5.524643663	19.38235784	
	18.02497973	4.57187686	5.528761606	19.40023601	
total	0.01922367	9.148650455	0.004117943	9.148671579	
SbO ₃ F ₃	7.671279642	-15.50425804	1.25043272	17.3434175	
	-7.673115176	-15.50350597	-1.248829415	17.34344166	
total	-0.001835534	-31.00776401	0.001603305	31.00776411	
RbO ₅ F ₃	-2.969476493	-1.516763083	1.490241888	3.652284461	
	2.969696696	-1.516572524	-1.490397569	3.652447891	
total	0.000220203	-3.033335607	-0.000155681	3.033335619	
RbO ₅ F ₄	-1.532447842	1.921428942	-0.455412973	2.499537266	
	1.532030836	1.920925535	0.455560068	2.498921441	
total	-0.000417006	3.842354477	0.000147095	3.842354502	
RbO ₇ F ₃	0.677633926	-1.091620233	3.280630448	3.523259657	
	-0.67702583	-1.089989837	-3.279237974	3.521341152	
total	0.000608096	-2.18161007	0.001392474	2.181610599	
RbO ₆ F ₃	2.863556564	-1.362563963	-0.80970568	3.272943635	
	-2.60569618	-1.851204741	0.402707331	3.221612139	
total	0.257860384	-3.213768704	-0.406998349	3.249684433	
Net dipole moment	0.284137	-25.458	-0.51807	25.4649	
Cell Volume	919.7 Å ³				

Table S5. Calculation of dipole moment for NO₃, SbO₂F₃, SbO₃F₃, RbO₅F₃, RbO₅F₄, RbO₇F₃ and RbO₆F₃ polyhedra and net dipole moment for a unit cell in Rb₂SbF₃(NO₃)₂. (D = Debyes).

Fig. S1 TGA curves of (a) RbSnF₂NO₃ and (b) Rb₂SbF₃(NO₃)₂ under N₂ atmosphere.

Fig. S2 XRD patterns of the residues of TGA for (a) RbSnF₂NO₃ and (b) Rb₂SbF₃(NO₃)₂.

Fig. S3 The IR spectra of (a) RbSnF₂NO₃ and (b) Rb₂SbF₃(NO₃)₂.

Fig. S4 Calculated band structures of (a) RbSnF₂NO₃ and (b) Rb₂SbF₃(NO₃)₂.

Fig. S5 The theoretical calculations of RbSnF₂NO₃. (a) Total and partial DOS of states for RbSnF₂NO₃, the Fermi level is normalized to 0 eV; (b) the calculated birefringence curves for RbSnF₂NO₃; (c) the electron-density difference map for RbSnF₂NO₃.

References

- (1) Sheldrick, G.M. A short history of SHELX-2014, Acta Crystallogr. 2008, 64, 112-122.
- (2) Spek, A. L. Single-crystal structure validation with the program PLATON. *J. Appl. Crystallogr.* 2003, *36*, 7-13.
- (3) Kurtz, S. K.; Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. *J. Appl. Phys.* **1968**, *39*, 3798-3813.
- (4) Segall, M. D.; Lindan, P. J. D.; Probert, M. J. First-principles simulation: ideas, illustrations and the CASTEP code. *J. Phys. Condens. Matter.* **2002**, *14*, 2717.
- (5) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.
- (6) Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, *Phys. Rev. B.* **1990**, *41*, 7892.