Supplementary Information

Reducing the dosage of the organic structure-directing agent in the crystallization of pure silica zeolite MFI (silicalite-1) for the volatile organic compounds (VOCs) adsorption

Zhenrui Mia[‡], Jing Li^{b‡}, Tingting Lu^c, Pu Bai^a, Jia-Nan Zhang^d, Wenfu Yan^{*a} and Ruren Xu^a

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

^b Research Institute of Jilin Petrochemical Company, Petrochina, Jilin City 132021, China.

^c Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.

^d School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

[‡] These authors contributed equally.

Content

Fig. S1 Experimental XRD patterns of the sample containing 0, 20, 40, 60, 80, and 100% standard silicalite-1 in amorphous silica.
Fig. S2 SEM images of silicalite-1 crystallized from the initial reaction mixture with a TPA^+/SiO_2 ratio of 0.035 and seed loading of 0, 2.5, and 5 wt.% respecting to SiO_2 and a TPA^+/SiO_2 ratio of 0.10 without seed
Fig. S3 HRTEM images and selected area electron diffraction (SAED) of silicalite-1 crystallized from the initial reaction mixture with a TPA^+/SiO_2 ratio of 0.035 and seed loading of 0, and 5 wt.% respecting to SiO_2
Fig. S4 Solid-state ²⁹ Si MAS NMR spectra of silicalite-1 crystallized from the initial reaction mixture with a TPA ⁺ /SiO ₂ ratio of 0.035 and seed loading of 0, 2.5, and 5 wt.% respecting to SiO_2
Fig. S5 Pore size distribution of silicalite-1 crystallized from the initial reaction mixture with a TPA ⁺ /SiO ₂ ratio of 0.035 and seed loading of 2.5, and 5 wt.% respecting to SiO ₂ 5
Fig. S6 Experimental XRD patterns of the silicalite-1 crystallized from the initial reaction mixture with TPA^+/SiO_2 ratio of 0.01 and seed loading of 0, 5, and 10 wt.% respecting to SiO_2 .
Table S1 Gel compositions for the crystallization of silicalite-1 7
Table S2 The area of the five characteristic diffraction peaks at 7.8, 8.8, 23.2, 23.8, and 24.3°
(2 θ) of the sample containing 0, 20, 40, 60, 80, and 100% standard silicalite-1 in amorphous silica against the proportion of silicalite-1

ferences

Fig. S1 Experimental XRD patterns of the sample containing 0, 20, 40, 60, 80, and 100% standard silicalite-1 in amorphous silica.

Fig. S2 SEM images of silicalite-1 crystallized from the initial reaction mixture with a TPA⁺/SiO₂ ratio of 0.035 and seed loading of 0, 2.5, and 5 wt.% respecting to SiO₂ and a TPA⁺/SiO₂ ratio of 0.10 without seed.

S-1₀-0.035

S-1₅-0.035

Fig. S3 HRTEM images and selected area electron diffraction (SAED) of silicalite-1 crystallized from the initial reaction mixture with a TPA⁺/SiO₂ ratio of 0.035 and seed loading of 0, and 5 wt.% respecting to SiO₂.

Fig. S4 Solid-state ²⁹Si MAS NMR spectra of silicalite-1 crystallized from the initial reaction mixture with a TPA⁺/SiO₂ ratio of 0.035 and seed loading of 0, 2.5, and 5 wt.% respecting to SiO₂.

Fig. S5 Pore size distribution of silicalite-1 crystallized from the initial reaction mixture with a TPA^+/SiO_2 ratio of 0.035 and seed loading of 2.5, and 5 wt.% respecting to SiO_2 .

Fig. S6 Experimental XRD patterns of the silicalite-1 crystallized from the initial reaction mixture with TPA^+/SiO_2 ratio of 0.01 and seed loading of 0, 5, and 10 wt.% respecting to SiO₂.

Gel composition	TPA⁺/SiO ₂	Reference
SiO ₂ :0·4TPAOH:35H ₂ O	0.4	1
SiO ₂ :0·256TPAOH:30H ₂ O	0.256	2
SiO ₂ : 0.24TPAOH: 24H ₂ O: 4EtOH	0.24	3
1.0NaOH:3.4TPAOH: 12.6TEOS: 889H ₂ O	0.27	4
9TPAOH: 25SiO ₂ : 480H ₂ O	0.36	5
1 TEOS: 0.2 TPAOH: 100 H ₂ O	0.2	6
1TEOS:0.12TPAOH:0.008NaOH:19.2 H ₂ O	0.12	7

Table S1 Gel compositions for the crystallization of silicalite-1

Table S2 The area of the five characteristic diffraction peaks at 7.8, 8.8, 23.2, 23.8, and 24.3° (2 θ) of the sample containing 0, 20, 40, 60, 80, and 100% standard silicalite-1 in amorphous silica against the proportion of silicalite-1

Sample	Seed	The area of the diffraction peak				Sum of the	
loading	7.8°	8.8°	23.2°	23.8°	24.3°	area	
1	0	0	0	0	0	0	0
2	20%	5865	6706	7479	3998	772	24820
3	40%	13747	14321	15422	6111	913	50514
4	60%	17998	18497	23788	17310	1044	78637
5	80%	28311	31645	39639	24089	5154	128838
6	100%	31433	41712	49434	29365	6301	158245

Table S3 Relative crystallinity of the products crystallized from the initial reaction mixtures with $TPA^+/SiO_2=0.01$ and in the presence of 0, 5, and 10 wt.% seed (respects to SiO_2)

·	• • •	• •
Sample	Sum of the integrated area	Relative crystallinity ^a
S-1 ₀ -0.01	0	0
S-1 ₅ -0.01	8560	17.68%
S-1 ₁₀ -0.01	47973	99.07%
S-1 ₀ -0.10	48425	100.00%

^a The standard silicalite-1 used in calculating the relative crystallinity of the products is crystallized from the initial reaction mixture with a TPA^+/SiO_2 ratio of 0.10 in the absence of seed.

References

- 1. D. Laprune, C. Theodoridi, A. Tuel, D. Farrusseng and F. C. Meunier, Effect of polyaromatic tars on the activity for methane steam reforming of nickel particles embedded in silicalite-1, *Appl. Catal. B: Environ*, 2017, **204**, 515-524.
- 2. M. Liu, Z. Chang, H. Wei, B. Li, X. Wang and Y. Wen, Low-cost synthesis of sizecontrolled TS-1 by using suspended seeds: From screening to scale-up, *Appl. Catal., A*, 2016, **525**, 59-67.
- 3. H. Li, Y. Wang, F. Meng, F. Gao, C. Sun, C. Fan, X. Wang and S. Wang, Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion, *RSC Adv.*, 2017, **7**, 25605-25620.
- 4. J. Gao and Y. Tao, Synthesis and characterization of small-mesopore-added silicalite-1 zeolites using single wall carbon nanohorn templating, *Adsorption*, 2016, **22**, 1059-1063.
- 5. T. Butt and L. Tosheva, Synthesis of colloidal silicalite-1 at high temperatures, *Micropor. Mesopor. Mater.*, 2014, **187**, 71-76.
- Z. Wang, T. Yu, P. Nian, Q. Zhang, J. Yao, S. Li, Z. Gao and X. Yue, Fabrication of a Highly b-Oriented MFI-Type Zeolite Film by the Langmuir–Blodgett Method, *Langmuir*, 2014, 30, 4531-4534.
- 7. F. Wei, W. Song, F. Wei and C. Cao, Ordered mesoporous silcalite-1 zeolite assembled from colloidal nanocrystalline precursors, *Chinese J.Catal.*, 2015, **36**, 838-844.