Electronic supplementary information (ESI)

Switching on thermal and light-induced spin crossover by desolvation of the $[Fe(3-bpp)_2](XO_4)_2$ solvent (X = Cl, Re) compounds

Abdelhak Djemel,^{a,b} Olaf Stefanczyk,^{*a,c} Cédric Desplanches,^a Kunal Kumar,^c Rachid Delimi,^d Farouk Benaceur,^b Shin-ichi Ohkoshi,^c and Guillaume Chastanet^{*a}

^{a.} CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France).

^{b.} Research Unit of Medicinal Plants (RUMP), University Pole No 02, Laghouat 3000, attached to Biotechnology Research Center (CRBt), UV 03 BP E73 Ali Mendjeli New Town, Constantine 25000 (Algeria).

^{c.}Department of Chemistry, School of Science The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan).

^d Badji Mokhtar University, Laboratory of Water Treatment and Valorization of Industrial Waste, BP 12, Annaba 23000 (Algeria).

E-mail OS: <u>olaf@chem.s.u-tokyo.ac.jp</u>. E-mail GS: <u>guillaume.chastanet@icmcb.cnrs.fr</u>.

Contents

Thermogravimetry	2
Figure S1. Thermogravimetric analyses of 1·sol (a) and 2·sol (b). Insets contain the first derivatives of the TGA curves (DTG)	2
Pictures of samples – desolvation induced colors changes	3
Figure S2. Pictures of 1·sol and 2·sol under different conditions: (a) freshly collected crystals, (b) crystallites after 5 min at 25°C, (c) samples just after heating to 120°C, (d) crystallites after 30 min at 120°C, (e) powdered samples for a total of 35 min at 120°C, and (f) nowdered samples for a total of 90 min at 120°C	2
Figure S3. Room temperature pictures of 1·sol and 2·sol spread on cellulose paper for the fresh sample, after 24 hours in air at ambier conditions and after 2 hours of heating at 120°C.	nt 3
Infrared (IR) spectroscopy	4
Figure S4. Infrared (IR) absorption spectra in KBr of 3-bpp, NaClO ₄ ·H ₂ O, KReO ₄ , 1·sol and 2·sol (pristine, after 24 h in air at ambient conditions, and 2 h heated at 120°C) in: (a) the 4000 – 400 cm ⁻¹ range, and (b) the fingerprint region with assignment	4
Ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy	5
Figure S5. Room temperature solid-state UV-Vis-NIR absorption (Kubelka-Munk function) spectra with assignment of 3-bpp,	
NaClO ₄ ·H ₂ O, KReO ₄ , 1·sol (a) and 2·sol (b) (pristine, after 24 h in dry air, and 2 h heated at 120°C) dispersed in BaSO ₄	5
Computational details	6
Figure S6. Models of A (a), B (b) and C (c) used for quantum chemical calculations	6
Figure S7. Calculated UV-vis spectra of 1·sol (green), 2·sol (blue), and [Fe(3-bpp) ₂][Au(CN) ₂] ₂ ·2H ₂ O (red) base on models A , B and C , respectively. Bars indicate relative probability of electronic transitions.	7
Figure S8. The energy level diagram with Fe d-based representative low spin molecular orbitals calculated for 1-sol and 2-sol.	8
List of excited state calculated for LS Fe(II)-based model A taken from complex 1-sol.	8
List of excited state calculated for LS Fe(II)-based model B taken from complex 2-sol.	10
Figure S9. The energy level diagram with Fe <i>d</i> -based representative high spin molecular orbitals calculated for input file taken from reference R2.	13
List of excited state calculated for HS Fe(II)-based model C taken from reference R2.	14
Single crystal X-ray diffraction (SCXRD) studies	17
Table S1. Selected crystallographic parameters for 1·sol and 2·sol.	17
Table S2. Selected bond lengths and angles for 1·sol and 2·sol	17
Figure S10. Packing along crystallographic directions (100) (a for 1·sol and b for 2·sol), (010) (c for 1·sol and d for 2·sol), and (001) (e for 1·sol and f for 2·sol) including a hydrogen bond networks.	or 18
Powder X-ray diffraction (PXRD) studies	19
Figure S11. (a) Experimental PXRD patterns of 1 -sol (pristine, after 24 h in dry air, and 2 h heated at 120°C) and calculated from single- crystal X-ray diffraction data including texture effect with preferred platy orientation along (002) direction with March-Dollase parameter $M/D = 0.6$ (1 -sol*). (b) Time-evolution of diffractograms of pristine 1 -sol. (c) Time-evolution of PXRD patterns of desolvated (2 h heated at 120°C) (d) Experimental PXRD patterns of 2 -sol (pristine and 2 h heated at 120°C) and calculated from single-crystal X-ray	11
diffraction data (2·sol *). (e) Time-evolution of diffractograms of pristine 2·sol . (f) Time-evolution of PXRD patterns of desolvated 2 (2 h heated at 120 °C).	າ 19
Photomagnetic properties	20
Figure S12. Time dependence of $\chi_{\rm M}T$ at $H_{\rm dc}$ = 10 kOe during excitation at 10 K with 650 nm light (P = 5 mW/cm ²) for pristine (1·sol) and	ł
decolvated phases (1 and 2)	20

Figure S1. Thermogravimetric analyses of 1-sol (a) and 2-sol (b). Insets contain the first derivatives of the TGA curves (DTG).

Pictures of samples – desolvation induced colors changes

Figure S2. Pictures of **1**-sol and **2**-sol under different conditions: (a) freshly collected crystals, (b) crystallites after 5 min at 25°C, (c) samples just after heating to 120°C, (d) crystallites after 30 min at 120°C, (e) powdered samples for a total of 35 min at 120°C, and (f) powdered samples for a total of 90 min at 120°C.

Figure S3. Room temperature pictures of **1**-sol and **2**-sol spread on cellulose paper for the fresh sample, after 24 hours in air at ambient conditions and after 2 hours of heating at 120°C.

Figure S4. Infrared (IR) absorption spectra in KBr of 3-bpp, NaClO₄·H₂O, KReO₄, **1**·sol and **2**·sol (pristine, after 24 h in air at ambient conditions, and 2 h heated at 120°C) in: (a) the 4000 – 400 cm⁻¹ range, and (b) the fingerprint region with assignment.

Ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy

Figure S5. Room temperature solid–state UV–Vis–NIR absorption (Kubelka–Munk function) spectra with assignment of 3-bpp, NaClO₄·H₂O, KReO₄, **1·sol** (a) and **2·sol** (b) (pristine, after 24 h in dry air, and 2 h heated at 120°C) dispersed in BaSO₄.

Computational details

Quantum chemical calculations were done using Gaussian 16 software.^{R1} Input files were prepared based on the crystal structure of **1**-sol (90 K) and **2**-sol (250 K), and [Fe(3-bpp)₂][Au(CN)₂]₂-2H₂O (440 K)^{R2} by removing the solvents and anions forming model **A**, **B** and **C** (Figure S6). The single point DFT and TD-DFT calculations were performed with B3LYP functionals, using Karlsruhe type def2-SVP basis set for *C*, *N* and *H* atoms and triple-zeta def2-TZVP basis set for Fe(II) center.^{R3,R4} The calculation yielded model **A** and **B** with low spin (LS) configuration with similar UV-Vis-NIR spectra (Figure S7) and molecular orbitals (Figure S8), and model **C** with complete high spin (HS) configuration (Figure S9). Ground state to lowest 100 electronic excited states were calculated with oscillator strength magnetic moment and constituting molecular orbitals. The molecular arrangements for relevant excited levels are presented below for all three models.

References

R1. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

R2. A. Djemel, O. Stefanczyk, M. Marchivie, E. Trzop, E. Collet, C. Desplanches, R. Delimi and G. Chastanet, Solvatomorphism-Induced 45 K Hysteresis Width in a Spin-Crossover Mononuclear Compound, *Chem. Eur. J.*, 2018, **24**, 14760-14767.

R3. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.

R4. A. Schaefer, C. Huber and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, *J. Chem. Phys.*, 1994, **100**, 5829.

Figure S6. Models of **A** (**a**), **B** (**b**) and **C** (**c**) used for quantum chemical calculations. Legend: C - grey, Fe – yellow, H – white, and N – blue. Red numbers indicate bond lengths in the first coordination sphere of Fe(II) center.

Figure S7. Calculated UV-vis spectra of **1-sol** (green), **2-sol** (blue), and [Fe(3-bpp)₂][Au(CN)₂]₂·2H₂O (red) base on models **A**, **B** and **C**, respectively. Bars indicate relative probability of electronic transitions. Symbols indicate electronic transitions with the largest contributions of: the *d*-*d* transitions and metal-to-ligand charge transfer (MLCT) - stars, ligand-to-ligand charge transfer (LLCT) – circles, MLCT and LLCT – down triangle, and ligand-to-metal charge transfer (LMCT).

122	132 127 128 x ² -y ²	132
121		128
120	xy yz zx 120 121 122	127

Figure S8. The energy level diagram with Fe *d*-based representative low spin molecular orbitals calculated for 1·sol and 2·sol.

List of excited state calculated for LS Fe(II)-based model **A** taken from complex **1·sol**.

Excited State	1: Singlet-A	2.2226 eV 557.84 nm f=0.0001 <s**2>=0.000</s**2>
112 ->127	0.15102	
118 ->127	-0.10202	
122 ->127	0.62113	
122 ->129	0.19782	
122 ->131	-0.10801	
Excited State	2: Singlet-A	2.6554 eV 466.92 nm f=0.0037 <s**2>=0.000</s**2>
120 ->127	0.27607	
120 ->130	0.22216	
122 ->123	0.58685	
Excited State	3: Singlet-A	2.6760 eV 463.32 nm f=0.0029 <s**2>=0.000</s**2>
121 ->127	0.33888	
121 ->129	0.14079	
121 ->130	-0.28310	
121 ->131	-0.10129	
121 ->132	0.15090	
122 ->124	0.46153	

Excited State	4: Singlet-A	2.7541 eV 450.18 nm f=0.0003 <s**2>=0.000</s**2>
120 ->127	0.28815	
120 ->130	0.49727	
120 ->132	-0.13549	
122 ->123	-0.35553	
Excited State	5: Singlet-A	2.7609 eV 449.06 nm f=0.0012 <s**2>=0.000</s**2>
121 ->127	-0.19145	
121 ->129	-0.10221	
121 ->130	0.37577	
121 ->132	-0.16184	
122 ->124	0.50436	
Excited State	6 [.] Singlet-A	3 0546 eV 405 90 nm f=0 0005 <\$**2>=0 000
120 ->123	0 46656	
121 ->124	-0 32914	
122 ->130	0 35447	
122 ->130	-0 12394	
Excited State	7. Singlet-A	3 1519 eV 393 36 nm f=0 0000 <\$**2>=0 000
120 ->123	0 43792	
120 ->120	0.53886	
Excited State	8. Singlet-A	3 1753 eV 390 46 nm f=0 0027 <\$**2>=0 000
120 ->124	0 27398	
121 ->123	-0 27254	
122 ->125	0 56797	
122 ->126	0 11477	
Excited State	9. Singlet-A	3 2854 eV 377 38 nm f=0 0068 <\$**2>=0 000
120 ->124	-0 32133	5.2654 CV 577.56 mm 1-0.0000 (5 2)-0.000
121 ->123	-0 40088	
122 ->125	-0 11361	
122 ->126	0 44605	
Excited State	10. Singlet-A	3 3876 eV 366 00 nm f=0 0069 <\$**2>=0 000
120 ->125	0 29654	5.5070 CV 500.00 mm 1=0.0005 (5 2)=0.000
120 ->127	0 31088	
120 ->129	0 12531	
120 ->130	-0.22947	
120 ->132	0 11678	
121 ->125	0 39210	
121 ->127	-0 15348	
Excited State	11 [·] Singlet-A	3 4054 eV 364 08 nm f=0 0154 <\$**2>=0 000
120 ->125	0 36172	
120 ->126	0 12111	
120 ->127	-0.11710	
121 ->125	-0.24863	
121 ->126	-0.10102	
121 ->127	-0.30987	
121 ->130	-0.28453	
122 ->126	0 19955	
Excited State	12: Singlet-A	3.4583 eV 358.51 nm f=0.1549 <\$**2>=0 000
120 ->124	0.35233	
121 ->123	0.31032	
121 ->125	0.15046	
122 ->126	0.43615	
Excited State	13: Singlet-A	3.5975 eV 344.64 nm f=0.0080 <\$**2>=0 000
120 ->123	-0.26632	
121 ->124	0.27201	
122 ->126	-0.13073	
122 ->130	0.51952	
100	0.01002	

122 ->132	-0.18656	
Excited State	14: Singlet-A	3.7116 eV 334.04 nm f=0.0020 <s**2>=0.000</s**2>
120 ->125	0.37352	
120 ->126	-0.19304	
120 ->127	0.13922	
121 ->125	-0.32867	
121 ->126	0.16365	
121 ->127	0.28196	
121 ->130	0.20607	
Excited State	15: Singlet-A	3.7572 eV 329.99 nm f=0.0016 <s**2>=0.000</s**2>
120 ->125	0.29848	
120 ->127	-0.33362	
120 ->129	-0.12790	
120 ->130	0.21560	
120 ->132	-0.12495	
121 ->125	0.34634	
121 ->127	0.13787	
121 ->130	0.12888	
Excited State	16: Singlet-A	3.7720 eV 328.70 nm f=0.0034 <s**2>=0.000</s**2>
118 ->123	0.11036	
119 ->123	0.11470	
120 ->125	-0.10251	
120 ->126	0.19889	
121 ->125	-0.10723	
121 ->126	0.62054	
Excited State	17: Singlet-A	3.8240 eV 324.23 nm f=0.0010 <s**2>=0.000</s**2>
120 ->126	0.62173	
121 ->126	-0.14373	
121 ->127	0.17501	
121 ->130	0.14680	

List of excited state calculated for LS Fe(II)-based model **B** taken from complex **2·sol**.

Excited State 112 ->127	1: Singlet-A 0 14573	2.1807 eV 568.56 nm f=0.0000 <s**2>=0.000</s**2>
122 ->127	0 57693	
122 ->128	0.32367	
122 ->129	-0.11194	
Excited State	2: Singlet-A	2.6298 eV 471.46 nm f=0.0040 <s**2>=0.000</s**2>
120 ->127	0.25406	
120 ->128	0.13572	
120 ->132	-0.13052	
121 ->132	-0.14446	
122 ->123	0.53761	
122 ->124	-0.26630	
Excited State	3: Singlet-A	2.6543 eV 467.11 nm f=0.0028 <s**2>=0.000</s**2>
120 ->132	-0.20712	
121 ->127	0.30918	
121 ->128	0.18520	
121 ->132	0.21318	
122 ->123	0.24754	
122 ->124	0.41446	
Excited State	4: Singlet-A	2.7362 eV 453.13 nm f=0.0006 <s**2>=0.000</s**2>
120 ->127	-0.15838	
120 ->130	-0.14678	

100 + 100	0.46141	
121 ->127	-0.19564	
121 ->128	-0.10723	
122 ->123	0.35264	
122 ->124	0.19617	
Excited State	5: Singlet-A	2.7465 eV 451.43 nm f=0.0008 <s**2>=0.000</s**2>
120 ->127	0.21372	
120 ->128	0.11743	
121 ->130	0.14358	
121 ->132	-0.42926	
122 ->124	0.44289	
Excited State	6: Singlet-A	3.0260 eV 409.72 nm f=0.0001 <s**2>=0.000</s**2>
120 ->123	0.45014	
121 ->123	0.17790	
121 ->124	-0.33150	
122 ->130	0.11955	
122 ->132	-0.34692	
Excited State	7: Singlet-A	3.1169 eV 397.77 nm f=0.0000 <s**2>=0.000</s**2>
120 ->123	0.30425	
120 ->124	-0.35251	
121 ->123	0.29359	
121 ->124	0.42959	
Excited State	8: Singlet-A	3.1913 eV 388.51 nm f=0.0012 <s**2>=0.000</s**2>
120 ->123	-0.23674	
120 ->124	-0.16867	
121 ->123	0.26729	
121 ->124	-0.12698	
122 ->125	0.56711	
Excited State	9: Singlet-A	3.2852 eV 377.41 nm f=0.0225 <s**2>=0.000</s**2>
120 \$124	0.44.400	
120->124	0.41406	
120 ->124	0.41406 0.37345	
120 ->124 121 ->123 121 ->124	0.41406 0.37345 0.12040	
120 ->124 121 ->123 121 ->124 122 ->126	0.41406 0.37345 0.12040 0.39435	
120 ->124 121 ->123 121 ->124 122 ->126 Excited State	0.41406 0.37345 0.12040 0.39435 10: Singlet-A	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->125	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000</s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132 Excited State	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132 Excited State 120 ->125	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->130 121 ->132 Excited State 120 ->125 120 ->132	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132 Excited State 120 ->125 120 ->132 121 ->132	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132 Excited State 120 ->125 120 ->132 121 ->127 121 ->127	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->130 121 ->132 Excited State 120 ->132 120 ->132 121 ->125 120 ->132 121 ->127 121 ->128 121 ->132	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->130 121 ->132 Excited State 120 ->125 120 ->132 121 ->127 121 ->128 121 ->128 121 ->132 122 ->126	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000</s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->130 121 ->132 Excited State 120 ->132 120 ->132 120 ->132 121 ->132 121 ->128 121 ->128 121 ->132 122 ->126 Excited State	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->132 Excited State 120 ->125 120 ->132 121 ->127 121 ->128 121 ->128 121 ->128 121 ->126 Excited State 120 ->123	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->132 Excited State 120 ->125 120 ->132 121 ->127 121 ->128 121 ->132 122 ->126 Excited State 120 ->123 120 ->124	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->132 Excited State 120 ->132 121 ->132 121 ->132 121 ->127 121 ->128 121 ->132 122 ->126 Excited State 120 ->123 120 ->124 120 ->125	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->132 Excited State 120 ->132 121 ->132 121 ->127 121 ->128 121 ->127 121 ->128 121 ->128 121 ->126 Excited State 120 ->123 120 ->124 120 ->125 121 ->123	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090 -0.25863	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->128 121 ->125 121 ->130 121 ->132 Excited State 120 ->125 121 ->127 121 ->128 121 ->128 121 ->128 122 ->126 Excited State 120 ->123 120 ->124 120 ->125 121 ->123 121 ->124	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090 -0.25863 -0.13309	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->122 121 ->125 121 ->130 121 ->132 Excited State 120 ->125 120 ->132 121 ->128 121 ->128 121 ->128 121 ->128 122 ->126 Excited State 120 ->123 120 ->123 120 ->124 120 ->125 121 ->124 122 ->126	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090 -0.25863 -0.13309 0.55495	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->128 121 ->125 121 ->130 121 ->132 Excited State 120 ->125 120 ->132 121 ->128 121 ->128 121 ->128 121 ->128 122 ->126 Excited State 120 ->123 120 ->124 120 ->125 121 ->124 122 ->126 Excited State	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090 -0.25863 -0.13309 0.55495 13: Singlet-A	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000</s**2></s**2></s**2>
120 ->124 121 ->123 121 ->124 122 ->126 Excited State 120 ->127 120 ->128 120 ->132 121 ->132 121 ->132 Excited State 120 ->125 120 ->132 121 ->127 121 ->128 121 ->128 121 ->128 121 ->126 Excited State 120 ->123 120 ->124 120 ->125 121 ->123 121 ->124 122 ->126 Excited State 120 ->125 121 ->123 121 ->123 121 ->124 122 ->126 Excited State 120 ->123	0.41406 0.37345 0.12040 0.39435 10: Singlet-A -0.34556 -0.19989 -0.12863 0.45554 0.14467 -0.23827 11: Singlet-A 0.43477 0.28703 0.34396 0.18084 -0.16296 -0.12676 12: Singlet-A 0.11978 -0.23843 0.10090 -0.25863 -0.13309 0.55495 13: Singlet-A 0.25045	3.4002 eV 364.63 nm f=0.0045 <s**2>=0.000 3.4234 eV 362.17 nm f=0.0076 <s**2>=0.000 3.4606 eV 358.27 nm f=0.1590 <s**2>=0.000 3.5714 eV 347.16 nm f=0.0035 <s**2>=0.000</s**2></s**2></s**2></s**2>

120 ->124	0.11860	
121 ->124	-0.24810	
122 ->130	-0.18151	
122 ->132	0.53626	
Excited State	14: Singlet-A	3.7304 eV 332.36 nm f=0.0040 <s**2>=0.000</s**2>
118 ->123	-0.10426	
120 ->125	0.36391	
120 ->127	-0.18305	
120 ->128	-0.11334	
120 ->132	-0.21194	
121 ->125	-0.33265	
121 ->126	-0.23969	
121 ->127	-0.20311	
121 ->128	-0.11523	
Excited State	15: Singlet-A	3.7513 eV 330.51 nm f=0.0016 <s**2>=0.000</s**2>
120 ->125	0.34634	
120 ->127	0.22748	
120 ->128	0.12424	
121 ->125	0.37904	
121 ->127	-0.19390	
121 ->132	0.27152	
Excited State	16: Singlet-A	3.7956 eV 326.65 nm f=0.0015 <s**2>=0.000</s**2>
120 ->125	0.10041	
120 ->126	-0.27997	
121 ->125	-0.13048	
121 ->126	0.58783	
Excited State	17: Singlet-A	3.8110 eV 325.33 nm f=0.0015 <s**2>=0.000</s**2>
120 ->125	0.13588	
120 ->126	0.61862	
121 ->126	0.24556	

Figure S9. The energy level diagram with Fe *d*-based representative high spin molecular orbitals calculated for input file taken from reference **R2.**

List of excited state calculated for HS Fe(II)-based model **C** taken from reference **R2**.

Excited State 1:	5.017-A	0.1740 eV 7124.97 nm f=0.0004 <s**2>=6.042</s**2>
120B ->121B	0.74774	
120B ->126B	0.67968	
120B <-121B	0.15524	
120B <-126B	0.15702	
Excited State 2:	5.011-A	0.2950 eV 4203.22 nm f=0.0002 <s**2>=6.028</s**2>
120B ->122B	0.75908	
120B ->123B	0.13318	
120B ->125B	0.57158	
120B ->131B	0.16578	
120B ->132B	0.18888	
Excited State 3:	5.000-A	1.7155 eV 722.72 nm f=0.0001 <s**2>=6.000</s**2>
120B ->127B	0.84813	
120B ->128B	0.47661	
120B ->130B	-0.15646	
Excited State 4:	5.003-A	2.1313 eV 581.72 nm f=0.0000 <s**2>=6.007</s**2>
120B ->125B	-0.16668	
120B ->131B	-0.41475	
120B ->132B	0.81282	
120B ->133B	-0.16079	
120B ->135B	-0.29016	
Excited State 5:	5.455-A	2.3575 eV 525.91 nm f=0.0003 <s**2>=7.188</s**2>
120A ->126A	-0.10392	
120B ->122B	-0.18688	
120B ->123B	0.95429	
Excited State 6:	5.408-A	2.3961 eV 517.45 nm f=0.0299 <s**2>=7.062</s**2>
120B ->121B	-0.66704	
120B ->124B	-0.14861	
120B ->126B	0.70549	
Excited State 7:	5.118-A	2.6596 eV 466.17 nm f=0.0002 <s**2>=6.300</s**2>
124A ->125A	0.97989	
Excited State 8:	5.110-A	2.6829 eV 462.12 nm f=0.0000 <s**2>=6.279</s**2>
124A ->126A	0.96370	
124A ->127A	0.16774	
Excited State 9:	5.396-A	2.7612 eV 449.02 nm f=0.0034 <s**2>=7.029</s**2>
120B ->122B	-0.61494	
120B ->123B	-0.12213	
120B ->125B	0.73614	
120B ->132B	0.16750	
Excited State 10:	5.397-A	2.7671 eV 448.06 nm f=0.0040 <s**2>=7.032</s**2>
120B ->124B	0.97645	
120B ->126B	0.15656	
Excited State 11:	5.688-A	2.9102 eV 426.03 nm f=0.0039 <s**2>=7.839</s**2>
115A ->126A	-0.13831	
116A ->125A	-0.12369	
121A ->126A	0.15024	
121A ->127A	-0.14218	
122A ->125A	-0.27309	
122A ->128A	0.31079	
123A ->126A	-0.27384	
123A ->127A	0.28160	
113B ->121B	-0.10377	
115B ->123B	-0.11020	
116B ->121B	0.13218	

118B ->121B	0.31784				
118B ->124B	0.30272				
119B ->122B	0.46728				
119B ->123B	-0.17908				
119B ->125B	-0.12489				
120B ->121B	0.10169				
120B ->126B	-0.10172				
Excited State 12:	5.683-A	2.9114 eV	425.86 nm	f=0.0001	<\$**2>=7.824
115A ->125A	0.13255				
116A ->126A	0.12411				
121A ->125A	-0.15074				
121A ->128A	0 13270				
122A ->126A	0 32575				
122A ->127A	-0 28900				
1220 ->1250	0 24491				
1230 ->1280	-0 27338				
1240 ->1270	0 14401				
115B ->121R	0.13863				
116B ->1210	-0 10254				
110D ->123D	0.205/2				
110D ->122D	-0.18/05				
118B ->125B	-0.10495				
1100 \1210	0.20620				
119B ->121B	0.39030				
119D ->124D	0.31028				
IZUD ->IZSD	-0.12030	2 1102 01	209 62 pm	f-0.0006	~ (**)>=C 000
	0 17100	5.1102 80	596.05 1111	1-0.0000	<3 22-0.000
122A ->120A	0.1/109				
122A ->127A	0.14733				
123A ->123A 122A \129A	0.16020				
123A ->126A	0.10230				
124A ->120A	0.72705				
124A ->127A 1100 \127D	0.72703				
110D ->122D 110D \122D	0.14202				
110B ->125B	-0 /5122				
119B ->121B	0.43132				
Evolted State 14:	0.13013	2 1659 01	201 62 nm	f-0.0024	~C**J>-7 601
1210 ->1260	0 11651	3.1038.64	591.05 mm	1-0.0024	<3 22=7.004
121A ->120A 122A \125A	0.11031				
122A ->12JA	0.31002				
122A ->126A	-0.21093				
123A ->120A	-0.24440				
1234 ->1274	0.23443				
124A ->120A	0.23204				
110D ->121D	0.38741				
110D ->124D	0.1/1/9				
1100 \1220	0.20724				
Evolted State 15:	-0.30391	2 1710 01/	200 80 nm	f-0.000	~C**J>-7 071
171A _<170A	_0 16/11	J.T. T2 61	550.05 1111	1-0.0009	NJ 27-7.024
121A -/120A	-0.10411 0 121/1				
122A -2120A	0.12141				
1727 ->1727A	0.27200				
173V ->170V	0.12049				
123A -2120A	0.10320				
110D 5100D	0.05281				
110D >122D	0 1 5 4 7 7				
TTOR ->173R	-0.154//				

119B ->121B	0.44897	
119B ->124B	-0.21005	
Excited State 16:	5.134-A	3.2718 eV 378.95 nm f=0.0017 <s**2>=6.339</s**2>
121A ->127A	-0.15791	
122A ->128A	0.10457	
124A ->128A	0.94909	
118B ->121B	-0.12656	
119B ->122B	0.11411	
Excited State 17:	5.097-A	3.5884 eV 345.52 nm f=0.0005 <s**2>=6.244</s**2>
121A ->125A	0.75353	
122A ->126A	0.11324	
123A ->125A	0.60398	
124A ->126A	0.11127	
119B ->121B	-0.14660	
Excited State 18:	5.083-A	3.6138 eV 343.09 nm f=0.0002 <s**2>=6.210</s**2>
121A ->126A	0.87331	
121A ->127A	0.11538	
122A ->125A	-0.12058	
123A ->126A	0.41435	
124A ->125A	0.11309	
Excited State 19:	5.228-A	3.6967 eV 335.39 nm f=0.0574 <s**2>=6.583</s**2>
121A ->125A	0.43302	
122A ->126A	-0.41232	
122A ->127A	-0.14213	
123A ->125A	-0.27842	
118B ->123B	0.26182	
119B ->121B	0.62326	
119B ->126B	0.13319	
Excited State 20:	5.255-A	3.7120 eV 334.01 nm f=0.0587 <s**2>=6.654</s**2>
118A ->125A	0.10228	
122A ->125A	0.38586	
123A ->126A	0.37951	
115B ->122B	-0.10462	
116B ->124B	-0.11912	
118B ->121B	0.70500	
118B ->126B	0.10910	
119B ->123B	0.27478	

Single crystal X-ray diffraction (SCXRD) studies

	1-sol	2·sol
Formula	C _{22.5} H ₂₀ Cl ₂ FeN ₁₀ O ₁₁	C ₂₂ H ₂₄ FeN ₁₀ O ₁₁ Re ₂
M _w (g/mol)	733.23	1032.76
Т (К)	90(2)	250(2)
Crystal system, space group	Triclinic, P-1	Triclinic, P-1
<i>a</i> (Å)	8.2930(5)	11.6404(4)
b (Å)	8.3598(6)	11.8143(4)
<i>c</i> (Å)	21.9377(13)	11.9919(4)
α (°)	81.870(6)	107.9610(10)
<i>β</i> (°)	89.641(6)	99.9260(10)
γ (°)	89.552(6)	91.0420(10)
V (Å ³)	1505.54(17)	1540.83(9)
Z	2	2
$ ho_{calc}$ (g/cm ³)	1.617	2.226
μ (mm-1)	0.753	8.374
F(000)	746	980
Crystal size (mm ³)	$0.262 \times 0.174 \times 0.100$	$0.314 \times 0.120 \times 0.111$
Radiation	ΜοΚα (λ = 0.71075)	ΜοΚ _α (λ = 0.71075)
2θ range (°)	6.198 to 54.97	4.25 to 55.064
	-10 ≤ h ≤ 9,	-15 ≤ h ≤ 15,
Index ranges	$-10 \le k \le 10$,	-15 ≤ k ≤ 14,
	-28 ≤ l ≤ 28	-15 ≤ ≤ 15
Reflections collected / unique	14694 / 6865	38720 / 7089
Reflections collected / unique	$[R_{int} = 0.0588, R_{sigma} = 0.0812]$	$[R_{int} = 0.0318, R_{sigma} = 0.0264]$
Refinement method	Full–matrix least–squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	6865/148/500	7089/0/424
GOF on F ²	1.205	1.097
$R_1/wR_2 (l>2\sigma(l))$	0.1084/0.2077	0.0357/0.0912
R_1/wR_2 (all data)	0.1339/0.2198	0.0504/0.0992
Largest diff. peak and hole (e/Å ³)	1.28/-0.94	2.15/-2.61
CCDC number		

Table S1. Selected crystallographic parameters for 1-sol and 2-sol.

/			
Table S2. Selected b	ond lengths and	angles for 1.sc	ol and 2·sol.

	1·sol	2·sol		
Bond lengths (Å)				
Fe1-N1 _{pyr}	1.951(5)	1.959(5)		
Fe1-N2 _{py}	1.930(5)	1.920(5)		
Fe1-N3 _{pyr}	1.955(5)	1.963(5)		
Fe1-N4 _{pyr}	1.957(4)	1.961(5)		
Fe1-N5 _{py}	1.921(5)	1.928(5)		
Fe1-N6 _{pyr}	1.952(4)	1.965(5)		
Fe-Naver	1.944(5)	1.949(5)		
Angles (°)				
N1 _{pyr} -Fe1-N2 _{py}	78.9(2)	79.4(2)		
N2 _{py} -Fe1-N3 _{pyr}	79.4(2)	79.7(2)		
N4 _{pyr} -Fe1-N5 _{py}	79.3(2)	79.3(2)		
N5 _{py} -Fe1-N6 _{pyr}	79.2(2)	79.4(2)		
(N _{pyr} -Fe-N _{py}) _{aver}	79.2(2)	79.5(2)		
N1 _{pyr} -Fe1-N4 _{pyr}	91.79(19)	91.6(2)		
N1 _{pyr} -Fe1-N6 _{pyr}	91.96(19)	91.3(2)		
N3 _{pyr} -Fe1-N4 _{pyr}	92.55(19)	92.0(2)		
N3 _{pyr} -Fe1-N6 _{pyr}	91.73(19)	92.8(2)		
(N _{pyr} -Fe-N _{pyr}) _{aver}	92.00(19)	91.9(2)		

Figure S10. Packing along crystallographic directions (100) (**a** for **1**-**sol** and **b** for **2**-**sol**), (010) (**c** for **1**-**sol** and **d** for **2**-**sol**), and (001) (**e** for **1**-**sol** and **f** for **2**-**sol**) including a hydrogen bond networks between 3-bpp and XO_{4^-} anions (orange dashed lines), 3-bpp and water molecules (magenta dashed lines), water molecules and XO_{4^-} anions (blue dashed lines), and in solvent molecules (green dashed lines). The numbers correspond to the distances between the hydrogen bond donor and acceptor. For clarity, hydrogen atoms have been omitted.

Figure S11. (a) Experimental PXRD patterns of **1**·sol (pristine, after 24 h in dry air, and 2 h heated at 120°C) and calculated from single-crystal X-ray diffraction data including texture effect with preferred platy orientation along (002) direction with March-Dollase parameter M/D = 0.6 (**1**·sol*). (b) Time-evolution of diffractograms of pristine **1**·sol. (c) Time-evolution of PXRD patterns of desolvated **1** (2 h heated at 120°C). (d) Experimental PXRD patterns of **2**·sol (pristine and 2 h heated at 120°C) and calculated from single-crystal X-ray diffraction data (**2**·sol*). (e) Time-evolution of diffractograms of pristine **2**·sol. (f) Time-evolution of PXRD patterns of desolvated **2** (2 h heated at 120°C).

Photomagnetic properties

Figure S12. Time dependence of $\chi_M T$ at H_{dc} = 10 kOe during excitation at 10 K with 650 nm light (P = 5 mW/cm²) for pristine (**1**·sol) and desolvated phases (**1** and **2**).