Electronic Supplementary Information (ESI) An Al-Li alloy/water system for superior and low-temperature

hydrogen production

Mili Liu^a, Hui Liu^b, Kang Chen^a, Jiangyong Sun^{c*}, Hui Wang^a, Jiangwen Liu^a,

Liuzhang Ouyang^{a,d*}

^aSchool of Materials and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology,

Guangzhou, 510641, PR China, E-mail address: meouyang@scut.edu.cn.

^bSchool of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, PR China.

^cInstitute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510651, China. E-mail address: sunjiangyong@gimp.gd.cn.

^dChina-Australia Joint Laboratory for Energy & Environmental Materials, Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, PR China.

Table of Contents

Table S1. The mass fraction of Al and Li for as-prepared alloys and Alloy 1-[<100]'s
hydrolytic by-products from ICP-OES test[3]
Table S2. Comparison of various Al-based alloys and composites for hydrogen production.
Gravimetric H ₂ density is calculated without water included[3]
Figure S1 (a) XRD pattern of as-prepared Al-17.6%Li alloy; (b) Hydrogen generation curves
of Al-17.6%Li alloy with different particle size at 299 K[4]
Figure S2. High resolution X-ray photoelectron spectroscopy (XPS) spectra of Li 1s and Al
2p of (a,c) pristine Al-31.9% alloy and (b,d) hydrolysis by-products[4]
Figure S3. EDS elemental mapping of Al-31.9% alloy[5]
Figure S4. The molten product of the Al-31.9%Li-[<400] during the hydrolysis process and
its SEM image was shown in inset[5]
Figure S5. SEM images of the solid hydrolysis by-products of (a) Al-31.9%Li-[<100] and (b)
Al-31.9%Li-[<400][5]
Reference[6]

hydrolytic by-products from ICP-OES test.					
Sample	Al (wt.%)	Li (wt.%)	Al/Li mass fraction ratio		
1	68.1	31.9	2.13		
2	82.4	17.6	4.68		
Alloy 1-[<100]'s hydrolytic by-products	16.9%	8.0%	2.11		

Table S1. The mass fraction of Al and Li for as-prepared alloys and Alloy 1-[<100]'s

Table S2. Comparison of various Al-based alloys and composites for hydrogen production. Gravimetric H_2 density is calculated without water included.

Materials	H ₂ production kinetics	Gravimetric H ₂ density	Ea	References
Al-9%Li-4%In-1%Zn	1214 ml/g in 15 min	10.4 wt%	22.5	1
Al-19.15%Li	645 ml/g in 10min	7.0 wt.%	-	2
Al-20%Li-5%Sn	1231ml/g in 1min	11.4 wt.%	-	3
Al-5%InCl ₃ -7%(Ni-Bi-B)	1197 ml/g in 10 min	9.8 wt.%	22.4	4
Al-15%Bi ₂ O ₂ CO ₃ -5%NaCl	900 ml/g in 10 min	7.3wt.%	9.4	5
Al-15%BiOCl	1058 m/g in 5min	8.6wt.%	26.9	6
Al-19%(Ca-In-Sn)-1%Cu	<500 ml/g in 10 min	< 4.1 wt.%	28.0	7
Al-graphite-Al(OH) ₃	1360 ml/ g in 20 min	11.1 wt.%	27.9	8
Al-10%Bi(OH)3-5%NaCl	1000 ml/g in 2 min	8.2 wt.%	10.4	9
Al-31.9%Li-[<200]	1190 ml/g in 30min	9.7 wt.%	-	our work
Al-31.9%Li-[<100]	1496 ml/g in 0.5 min	12.2 wt.%	3.3	our work

Figure S1 (a) XRD pattern of as-prepared Al-17.6%Li alloy; (b) Hydrogen generation curves of Al-17.6%Li alloy with different particle size at 299 K.

Figure S2. High resolution X-ray photoelectron spectroscopy (XPS) spectra of Li 1s and Al 2p of (a,c) pristine Al-31.9%-[<100] alloy and (b,d) hydrolysis by-products.

Figure S3. EDS elemental mapping of the Al-31.9%-[<100] alloy.

Figure S4. The molten product of the Al-31.9%Li-[<400] during the hydrolysis process and its SEM image was shown in inset.

Figure S5. SEM images of the solid hydrolysis by-products of (a) Al-31.9%Li-[<100] and (b) Al-31.9%Li-[<400].

Reference

- M. Q. Fan, S. Liu, C. Wang, D. Chen and K. Y. Shu, Hydrolytic Hydrogen Generation Using Milled Aluminum in Water Activated by Li, In, and Zn Additives, *Fuel Cells*, 2012, 12, 642-648.
- M.-C. Lin, J.-Y. Uan and T.-C. Tsai, Fabrication of AlLi and Al₂Li₃/Al₄Li₉ intermetallic compounds by molten salt electrolysis and their application for hydrogen generation from water, *International Journal of Hydrogen Energy*, 2012, **37**, 13731-13736.
- 3. S. Liu, M. Q. Fan, D. Chen and C. J. Lv, The Effect of Composition Design on the Hydrolysis Reaction of Al–Li–Sn Alloy and Water, *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*, 2015, **37**, 356-364.
- J. Chen, F. Xu, L. Sun, K. Zhang, Y. Xia, X. Guo, H. Zhang, F. Yu, E. Yan, H. Peng, P. Huang, S. Qiu, C. Xiang and Y. Sun, Effect of doped Ni-Bi-B alloy on hydrogen generation performance of Al-InCl₃, *Journal of Energy Chemistry*, 2019, **39**, 268-274.
- C. Chen, B. Lan, K. Liu, H. Wang, X. Guan, S. Dong and P. Luo, A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water, *Journal of Alloys and Compounds*, 2019, 808.
- C. Zhao, F. Xu, L. Sun, J. Chen, X. Guo, E. Yan, F. Yu, H. Chu, H. Peng, Y. Zou, Z. Liu and F. Li, A novel Al BiOCl composite for hydrogen generation from water, *International Journal of Hydrogen Energy*, 2019, 44, 6655-6662.
- C. Wei, D. Liu, S. Xu, T. Cui, Q. An, Z. Liu and Q. Gao, Effects of Cu additives on the hydrogen generation performance of Al-rich alloys, *Journal of Alloys and Compounds*, 2018, **738**, 105-110.
- S. Prabu and H.-W. Wang, Enhanced hydrogen generation from graphite-mixed aluminum hydroxides catalyzed Al/water reaction, *International Journal of Hydrogen Energy*, 2020, 45, 33419-33429.
- C. Chen, X. Guan, H. Wang, S. Dong and P. Luo, Hydrogen generation from splitting water with Al–Bi(OH)₃ composite promoted by NaCl, *International Journal of Hydrogen Energy*, 2020, 45, 13139-13148.