Supplemental information for:

Antitumor substitution-inert polynuclear platinum complexes stabilize Gquadruplex DNA and suppress G-quadruplex-mediated gene expression

Jaroslav Malina,^a Hana Kostrhunova,^a Nicholas P. Farrell^b and Viktor Brabec^{*a} ¹Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic and ²Virginia Commonwealth University, Department of Chemistry, Richmond, VA 23284-2006, USA

Table of Contents

Supplementary Figures Autoradiograms of 12% denaturing PAA gels for the <i>Taq</i> DNA polymerase stop assay on the templates containing <i>c-myc</i> , <i>c-kit2</i> , and <i>hTelo</i> G4-forming sequences in the presence of III-VI (Fig. S1)	S3 S3
Autoradiogram of 12% denaturing PAA gel for the <i>Taq</i> DNA polymerase stop assay on the template containing <i>hTelo</i> G4-forming sequence in the presence of I and II (Fig. S2)	S3
Autoradiograms of 12% denaturing PAA gels for the <i>Taq</i> DNA polymerase stop assay on the <i>c-myc</i> ctrl template in the presence of III-VI (Fig. S3)	S5
Fluorescence melting curves for the fluorescent labeled <i>c-myc</i> G4 in 4 mM potassium phosphate buffer (pH7) and in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S4)	S6
Fluorescence melting curves for the fluorescent labeled <i>c-kit2</i> G4 in 4 mM potassium phosphate buffer (pH7) and in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S5)	S7
Fluorescence melting curves for the fluorescent labeled <i>hTelo</i> G4 in 4 mM potassium phosphate buffer (pH7) and in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S6)	S 8
Fluorescence melting curves for the fluorescent labeled <i>c-myc</i> G4 in 10 mM potassium phosphate buffer (pH7) and 10 mM KCl in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S7)	S9
Fluorescence melting curves for the fluorescent labeled <i>c-kit2</i> G4 in 10 mM potassium phosphate buffer (pH7) and 10 mM KCl in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S8)	S10
Fluorescence melting curves for the fluorescent labeled <i>hTelo</i> G4 in 10 mM potassium phosphate buffer (pH7) and 10 mM KCl in the presence of 0.8 μ M I-VI and various concentrations of competitor duplex (Fig. S9)	S11
CD spectra of <i>c-myc</i> G4 in the presence of II-VI (Fig. S10)	S12

CD spectra of <i>c-kit2</i> G4 in the presence of II-VI (Fig. S11)	S13
CD spectra of hTelo G4 in the presence of II-VI (Fig. S12)	S14
Fluorescence response of <i>c-myc</i> G4 mixed with Hoechst 33258 or thiazole orange in the presence of increasing concentrations of I-VI (Fig. S13)	S15
Antiproliferative effects of the investigated SI-PPCs (Table S1)	S15

Supplementary Figures

Fig. S1. Autoradiograms of 12% denaturing PAA gels for the *Taq* DNA polymerase stop assay on the templates containing *c-myc*, *c-kit2*, and *hTelo* G4-forming sequences in the presence of increasing concentrations of **III-VI**. *p*, *ps*, and *fp* correspond to primer, pausing site, and full-length product, respectively.

Fig. S2. (A) Autoradiogram of 12% denaturing PAA gel for the *Taq* DNA polymerase stop assay on the template containing *hTelo* G4-forming sequence with increasing concentrations of I and II. *p*, *ps*, and *fp* correspond to primer, pausing site, and full-length product, respectively (B) Graphical representation of the full-length product synthesis in the presence of increasing concentrations of I and II.

Fig. S3. Autoradiograms of 12% denaturing PAA gels for the Taq DNA polymerase stop assay on the *c-myc* ctrl template in the presence of increasing concentrations of I-VI. p and fp correspond to primer and full-length product, respectively.

c-myc, 4 mM K⁺

Fig. S4. Fluorescence melting curves for the fluorescent labeled *c-myc* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 4 mM potassium phosphate (pH 7) and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S5. Fluorescence melting curves for the fluorescent labeled *c-kit2* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 4 mM potassium phosphate (pH 7) and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S6. Fluorescence melting curves for the fluorescent labeled *hTelo* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 4 mM potassium phosphate (pH 7) and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S7. Fluorescence melting curves for the fluorescent labeled *c-myc* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 10 mM potassium phosphate (pH 7) and 10 mM KCl and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S8. Fluorescence melting curves for the fluorescent labeled *c-kit2* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 10 mM potassium phosphate (pH 7) and 10 mM KCl and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S9. Fluorescence melting curves for the fluorescent labeled *hTelo* G4 (0.4 μ M) in the presence of 0.8 μ M **I-VI** and increasing concentrations of the competitor duplex 26-ds. The buffer conditions were 10 mM potassium phosphate (pH 7) and 10 mM KCl and the temperature gradient was 0.7 °C/min. The concentrations of 26-ds are indicated in the Fig. 3.

Fig. S10. CD spectra of 2.5 μ M *c-myc* G4 in the presence of increasing concentrations of **II-VI**. The concentrations of **II-VI** are indicated in the Fig. 4A. The buffer conditions were 10 mM potassium phosphate (pH 7) and 30 mM KCl.

Fig. S11. CD spectra of 2.5 μ M *c-kit2* G4 in the presence of increasing concentrations of **II-VI**. The concentrations of **II-VI** are indicated in the Fig. 4A. The buffer conditions were 10 mM potassium phosphate (pH 7) and 30 mM KCl.

Fig. S12. CD spectra of 2.5 μ M *hTelo* G4 in the presence of increasing concentrations of **II-VI**. The concentrations of **II-VI** are indicated in the Fig. 4A. The buffer conditions were 10 mM potassium phosphate (pH 7) and 30 mM KCl.

Fig. S13. Fluorescence response of the mixture of 0.25 μ M *c-myc* G4 and 0.25 μ M Hoechst 33258 (left panel), or TO (right panel) in the presence of increasing concentrations of **I-VI**. The buffer conditions were 10 mM potassium phosphate buffer (pH 7) and 30 mM KCl.

Table S1. Antiproliferative effects of the investigated SI-PPCs expressed as $IC_{50} \, [\mu M]^{[a]}$ as determined with MTT assay after a 72 h treatment

	MDA-231	HCT116
Tetraplatin NC (I)	7 ± 1	3.4 ± 0.9
Triplatin NC (II)	12 ± 2	5.9 ± 0.9
Diplatin NC (IV)	41 ± 7	20 ± 4
Triplatin NC-A (III)	60 ± 10	28 ± 5
AH-59 (V)	140 ± 20	69 ± 4
AH-64 (VI)	> 200	170 ± 20

^[a] The results are expressed as mean values \pm SD from three independent measurements.