Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

N-doped carbon coated $NiCo_2O_4$ Nanorods for efficient electrocatalytic oxygen evolution

Muhammad Ahmad,^a Baojuan Xi,^a Yu Gu,^a and Shenglin Xiong*^a

^a Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China

*Correspondence author. Email: chexsl@sdu.edu.cn (S.L.X)

Figure S1. FESEM images of (a) ZIF-67, (b-d) ZIF-67@Ni-TPA after solvothermal reaction of 45 min, 2 h and 10 h, respectively.

Figure S2. Lavender precipitates of ZIF-67@Ni-TPA.

Figure S3. TEM images of (a) ZIF-67@Ni-TPA nanorods and (b) NiCo@NC nanorods.

Figure S4. TEM image of NiCo₂O₄@NC nanorods after thermal reduction and oxidation process.

Figure S5. EDX spectrum of NiCo₂O₄@NC nanorods.

Figure S6. TGA curve of $NiCo_2O_4$ @NC nanorods in the air atmosphere.

Figure S7. XRD patterns of ZIF-67 to ZIF-67@Ni-TPA obtained at different reaction time.

Figure S8. SEM image of NiCo₂O₄ nanorods.

Figure S9. Equivalent circuit employed to calculate R_{ct} value.

Figure S10. Cyclic voltammetry (CV) curves of electrocatalysts at various scan rates: (a) NiCo₂O₄@NC, (b) NiCo₂O₄.

Figure S11. LSV curves of NiCo₂O₄@NC recorded before and after chronoamperometry measurement.

Electrochemical measurements

Exchange current density [(mA cm⁻²)]

Exchange current density can be calculated by considering charge/electron transfer resistance at electrode-electrolyte interphase using following equation (S1).

$$J_{exc} = RT/nAF\theta$$
(S1)

Where,

R = universal gas constant (8.314 J/(mol.K)), T= temperature (298 K), n= number of electrons F= Faraday's constant (96485 C/mol), θ = charge transfer resistance (Ω), A= geometrical area of working electrode.

NiCo₂O₄@NC nanorods

$$=\frac{\frac{8.314\frac{J}{molK}\times 298K}{^{4\times96485\frac{C}{mol}}\times 27\ \Omega\times 0.196\ cm^{2}}}{1.21\ mA\ cm^{-2}}$$
(S2)

NiCo₂O₄ nanorods

$$= \frac{\frac{8.314 \frac{J}{mol K} \times 298K}{4 \times 96485 \frac{c}{mol} \times 37 \ \Omega \times 0.196 \ cm^2}}{0.8 \ mA \ cm^{-2}}$$
(S3)

NiCo@NC

$$= \frac{\frac{8.314 \frac{J}{mol K} \times 298K}{4 \times 96485 \frac{C}{mol} \times 49 \ \Omega \times 0.196 \ cm^2}} = 0.66 \ mA \ cm^{-2} \ (S4)$$

Active electrochemical surface area (ECSA)

$$\mathbf{ECSA}^{=}\frac{c_{dl}}{c_s} \tag{S5}$$

Where, C_{dl} = double layer capacitance and C_s = specific capacitance value for flat standards with 1 cm² of real surface area.

Table S1. ICP-MS analysis:	Ni/Co compositions	obtained from	NiCo ₂ O ₄ @NC and
NiCo ₂ O ₄ nanorods.			

Sample	Nickel	Cobalt	Ni/Co
	(mmol/L) × 10 ³	(mmol/L) × 10 ³	
NiCo ₂ O ₄ @NC	0.292	0.585	1/2
NiC ₂ O ₄	0.276	0.549	0.98/2

Table S2. Comparison of NiCo₂O₄@NC electrocatalyst with other reported electrocatalysts.

Electrode material	Overpotential (mV)	Tafel slope	References
	@10 mA cm ⁻²	(mv dec⁻¹)	
NiCo ₂ O ₄ nanorods	420	101	S1
NiCo ₂ O ₄ nanoflowers	383	137	S2
Fe doped NiCo ₂ O ₄	297	68	S3
nanowires			
NiCo ₂ O ₄ core shell	320	63	S4
NiCo ₂ O ₄ nanobelts	325	71	S5
NiCo ₂ O ₄ @NC nanoflowers	383	53.5	27
Ni/Co ₃ O ₄ @NC	350	52.7	S6
NiCo ₂ O ₄ @NC nanorods	296	53	This work

References

- S1 A. Dymerska, W. Kukułka, M. Biegun and E. Mijowska, Spinel of Nickel-Cobalt Oxide with Rod-Like Architecture as Electrocatalyst for Oxygen Evolution Reaction, *Materials*, 2020, **13**, 3918.
- S2 Z. Li, B. Li, J. Chen, Q. Pang and P. Shen, Spinel NiCo₂O₄ 3-D nanoflowers supported on graphene nanosheets as efficient electrocatalyst for oxygen evolution reaction, *Int. J. Hydrogen Energy*, 2019, **44**, 16120–16131.
- S3 Z. Hao, P. Wei, H. Kang, Y. Yang, J. Li, X. Chen and L. Liu, Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction, *Nanotechnology*, 2020, **31**, 435707.

- S4 Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts, *Adv. Energy Mater.* 2015, *5*, 1402031.
- S5 S. Yao, H. Wei, Y. Zhang, X. Zhang, Y. Wang, J. Liu and Y. Wu, Controlled growth of porous oxygen-deficient NiCo₂O₄ nanobelts as high-efficiency electrocatalysts for oxygen evolution reaction, *Catal. Sci. Technol.*, 2020, **11**, 264–271.
- S6 B. Dong, J-Y. Xie, Z. Tong, J-Q Chi, Y-N, Zhou, X. Ma, Z-Y. Lin, W. Lei and Y-M. Chai, Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution, *Chinese J. Catal.*, 2020, **41**, 1782–1789.