< Electronic Supplementary Information>

Stepwise coordination isomerism. Adsorption and recognition of CH_2I_2 into 2D layered crystals in SCSC mode

Junhee Kim^a, Junmyeong Park^a, Dongwon Kim^a, Martino Di Serio^b and Ok-Sang Jung^{a,*} ^aDepartment of Chemistry, Pusan National University, Busan 46241, Republic of Korea Fax: (+82) 51-5163522; Tel: (+82) 51-5103240; E-mail: <u>oksjung@pusan.ac.kr</u>

^bDepartment of Chemical Sciences, University of Naples Federico II, Naples, Italy

Electronic Supplementary Information (ESI) available: Experimental details and crystal structure determination. IR spectra of each sample (L, 3CH₂Cl₂·2C₂H₅OH@[CdI₂L], 4C₄H₈O@[CdI₂L], 3CH₂I₂@[CdI₂L] and 3CH₂Br₂@[CdI₂L]). TGA/DSC curves of the present Cd(II) compounds, (3CH₂Cl₂·2C₂H₅OH@[CdI₂L] and 4C₄H₈O@[CdI₂L]). Full ¹H NMR spectra of each sample (L, 3CH₂Cl₂·2C₂H₅OH@[CdI₂L], 4C₄H₈O@[CdI₂L], 1.3CH₂Cl₂·0.8C₂H₅OH·1.5CH₂I₂@[CdI₂L], 0.8 CH₂Cl₂·0.6C₂H₅OH·2.5CH₂Br₂@[CdI₂L], 3CH₂I₂@[CdI₂L], 3CH₂I₂@[CdI₂L] and 3CH₂Cl₂@[CdI₂L]). This material is available free of charge at http://pubs.acs.org. CCDC 2077166 - 2077169 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Fig. S1 IR spectra of L (a), $3CH_2Cl_2 \cdot 2C_2H_5OH@[CdI_2L]$ (b), $4C_4H_8O@[CdI_2L]$ (c), $3CH_2I_2@[CdI_2L]$ (d), and $3CH_2Br_2@[CdI_2L]$ (e).

 $\label{eq:Fig.S2} \textbf{Fig. S2} \ TGA \ and \ DSC \ overlays \ of \ 3CH_2Cl_2 \cdot 2C_2H_5OH@[CdI_2L] \ (a) \ and \ 4C_4H_8O@[CdI_2L] \ (b).$

Fig. S3 ¹H NMR spectra of L (a), $3CH_2Cl_2 \cdot 2C_2H_5OH@[CdI_2L]$ (b), $4C_4H_8O@[CdI_2L]$ (c), 1.3CH₂Cl₂·0.8C₂H₅OH·1.5CH₂I₂@[CdI₂L] (d), 0.8 CH₂Cl₂·0.6C₂H₅OH·2.5CH₂Br₂@[CdI₂L] (e), $3CH_2I_2@[CdI_2L]$ (f), $3CH_2Br_2@[CdI_2L]$ (g), and $3CH_2Cl_2@[CdI_2L]$ (h) in Me₂SO-d₆. For spectra (d) and (e), solvate molecules were exchanged from CH₂Cl₂·2C₂H₅OH@[CdI_2L]. For spectra (f), (g), and (h), guestes were exchanged from $4C_4H_8O@[CdI_2L]$. After the solvate exchange, the crystals were washed with diethyl ether to wash off the solvents on the surface.

Fig. S4 Detailed crystal structure for $3CH_2Cl_2 \cdot 2C_2H_5OH@[CdI_2L]$ (a) and $4C_4H_8O@[CdI_2L]$ (b) showing octahedral geometry around Cd(II) and conformation around ligands.

Fig. S5 Topology(new, {4³·6²·8}) analysis of 3CH₂Cl₂·2C₂H₅OH@[CdI₂L]: (a) along c axis, (b) along a axis, and (c) along b axis