Electronic Supplementary Information

Heterogeneity Induced Dual Luminescent Properties of AgInS₂ and AgInS₂-ZnS Alloyed Nanocrystals

Patrycja Kowalik,^{a,b} Sebastian G. Mucha,^c Katarzyna Matczyszyn,^{*d} Piotr Bujak,^{*a} Leszek M. Mazur,^d Andrzej Ostrowski,^a Angelika Kmita,^e Marta Gajewska^e and Adam Pron^a

^aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland. E-mail: piotrbujakchem@poczta.onet.pl ^bFaculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland ^cLaboratoire Charles Coulomb (L2C), UMR5221, University of Montpellier, CNRS, 34095 Montpellier, France ^dAdvanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland. Email: katarzyna.matczyszyn@pwr.edu.pl ^eAGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. Mickiewicza 30, 30-059 Kraków, Poland

Fig. S1. HR-TEM image (a), energy-dispersive spectrum (b) and X-ray powder diffractogram (c) of Ag_{1.0}In_{3.1}Zn_{1.0}S_{4.0} alloyed nanocrystals (reference sample).

Fig. S2. Photoluminescence excitation (orange line) and emission (red line) spectra of $Ag_{1,0}In_{3,1}Zn_{1,0}S_{4,0}$ nanocrystals dispersion in toluene (reference sample).

Fig. S3. Energy-dispersive spectrum of Zn_{1.0}In_{3.4}S_{4.9} (Ag-0) nanocrystals.

Fig. S4. Energy-dispersive spectra of $Ag_{1.0}In_{1.6}S_{2.8}$ (Ag-1) (a) and $Ag_{1.0}In_{1.3}S_{2.4}$ (Ag-2) (b) nanocrystals.

Fig. S5. TEM and HR-TEM images and corresponding histogram of $Ag_{1.0}In_{1.6}S_{2.8}$ (Ag-1) nanocrystals.

Fig. S6. HR-TEM image of Ag_{1.0}In_{1.3}S_{2.4} (Ag-2) nanocrystals.

Fig. S7. Energy-dispersive spectra of $Ag_{1.0}In_{2.3}Zn_{1.6}S_{3.6}$ (Ag-3) (a) and $Ag_{1.0}In_{2.1}Zn_{4.4}S_{8.9}$ (Ag-4) (b) nanocrystals.

Fig. S8. TEM image and corresponding histogram of Ag_{1.0}In_{2.3}Zn_{1.6}S_{3.6} (Ag-3) nanocrystals.

Fig. S9. HR-TEM image of $Ag_{1.0}In_{2.1}Zn_{4.4}S_{8.9}$ (Ag-4) nanocrystals.

Fig. S10. Room temperature UV-vis-NIR spectrum of toluene dispersion of $Ag_{1.0}In_{1.6}S_{2.8}$ (Ag-1) and $Ag_{1.0}In_{1.3}S_{2.4}$ (Ag-2) nanocrystals and the corresponding $(Ahv)^2 vs hv$ curve (where A = absorbance, h = Planck's constant and v = frequency).

Fig. S11. Room temperature UV-vis-NIR spectrum of toluene dispersion of $Ag_{1.0}In_{2.3}Zn_{1.6}S_{3.6}$ (Ag-3) and $Ag_{1.0}In_{2.1}Zn_{4.4}S_{8.9}$ (Ag-4) nanocrystals and the corresponding $(Ahv)^2 vs hv$ curve (where A = absorbance, h = Planck's constant and v = frequency).

Fig. S12. The experimental setups for the determination of absolute PLQY values (a) and time-resolved spectroscopic measurements (b).