Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

Ferromagnetic Archimedean Polyhedra $\{Fe_{24}M_{18}\}$ (M = Fe, Ni, and Mn) with Tunable Electron

Configurations

Wen Wen,^a Yin-Shan Meng,^{*a} Cheng-Qi Jiao,^a Qiang Liu,^a Hai-Lang Zhu,^a Ya-Ming Li,^a Hiroki

Oshio^a and Tao Liu^{*a}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.

*Corresponding author. Email: mengys@dlut.edu.cn (Y.-S. Meng); liutao@dlut.edu.cn (T. Liu)

Contents

Experimental Section	
Table S1: Crystal Data and Structure Refinements for compounds 1-3 at 150 K	S6
Table S2: Selected Bond Lengths (Å) and Bond Angles (°) for compound 1	
Table S3: Selected Bond Lengths (Å) and Bond Angles (°) for compound 2	
Table S4: Selected Bond Lengths (Å) and Bond Angles (°) for compound 3	
Table S5: The Fe···Fe edge lengths for the squares, rectangles, and regular triangles for 1-3	compounds
Table S6: Mössbauer parameters for compounds 1-3 at 80K	S11
Table S7: ICP-AES experiments results for compounds 1-3	S12
Table S8 : The $\chi_m T$ value at 300 K and Curie-Weiss fitting value of 1-3	
Table S9 : The ground spin state, ΔS_{max} (experimental and calculated) for 1-3	
Table S10 : Summary of ΔS_{max} data for reported discrete 3d-metal clusters	
Figure S1: Thermo-gravimetric analysis curve for compounds 1-3	
Figure S2: X-ray powder diffraction data for compounds 1-3	S17
Figure S3: The asymmetric unit and crystal packing for 1-3	
Figure S4 : The frame structure and skeleton structure with metal ions bridged by cyanic and packing structure for 1-3	le groups
Figure S5: Construction of pseudo-rhombicuboctahedron through cut of a cubic	S20
Figure S6: Peak area ratio of different type of Fe species	
Figure S7: XPS spectra of Ni 2p for compound 2 and Mn 2p for compound 3	
Figure S8: Field-dependent of magnetic susceptibility for compounds 1-3	
Figure S9 : Plot of magnetization (M/N β) vs HT ⁻¹ for compounds 1-3	

Experimental Section

Materials

All chemical reagents were acquired from commercial sources and used without further purification. $[Bu_4N][Fe(Tp)(CN)_3]$ (Tp = hydrotris(pyrazolyl)borate) was synthesized according to the literature's method.^{S1}

Synthesis of compounds 1-3

Compounds **1-3** were constructed through the reaction of $[Bu_4N][Fe^{III}(Tp)(CN)_3]$, pyridine-4carboxaldehyde and M(ClO₄)₂·6H₂O (M = Fe²⁺/Ni²⁺/Mn²⁺). 1.0 mL aqueous solution of M(ClO₄)₂·6H₂O (0.010 mmol) was placed at the bottom of a test tube, a mixture of methanol and water (1: 1, v/v, 6 mL) was gently layered on the top of the solution, and then 1.0 mL methanol solution of Bu₄N[Fe^{III}(Tp)(CN)₃] (0.010 mmol) and pyridine-4-carboxaldehyde (0.020 mmol) was carefully added as the third layer. After a few weeks, cubic crystals of **1-3** were collected. Yield for compound **1**: 38% based on Fe(ClO₄)₂·6H₂O. Anal. Calcd (%) for C₃₆₀H₃₅₄B₂₄Fe₄₂N₂₂₈O₅₄: C 38.12, H 3.15, N 28.15; Found: C 37.98, H 3.19, N 28.10. Yield for compound **2**: 29% based on Ni(ClO₄)₂·6H₂O. Anal. Calcd (%) for C₃₆₀H₃₅₀B₂₄Fe₂₄Ni₁₈N₂₂₈O₅₀: C 38.17, H 3.11, N 28.20; Found: C 37.84, H 3.23, N 27.90. Yield for compound **3**: 27% based on Mn(ClO₄)₂·6H₂O. Anal. Calcd (%) for C₃₆₀H₃₅₃B₂₄Fe₃₂Mn₁₀N₂₂₈O₅₂: C 38.26, H 3.15, N 28.26; Found: C 37.87, H 3.19, N 27.92.

Structure determination and refinement

The single-crystal XRD data for 1-3 were collected on Bruker D8 Venture CMOS-based diffractometer (Mo-K α radiation, $\lambda = 0.71073$ Å) using the SMART and SAINT programs. Final unit cell parameters were based on all observed reflections from integration of all frame data. The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that implanted in Olex2. For

all compounds, all non-hydrogen atoms were refined anisotropically and the hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters. Due to the strong disordering of the H₂O molecular, some hydrogen atoms could not be added. For **3-Mn**, a part of the $[Fe^{III}(Tp)(CN)_3]^-$ unit decomposed to release Fe^{III} ions into the $[Fe(NC)_4(H_2O)_2]$ and $[Fe(NC)_4(L)(H_2O)]$ moieties. The exact molecular formula and molecular weight were calculated from the real structure and unmatched with the refinement results.

IR Spectra measurements.

Infrared spectra were measured on KBr pellets samples using a Nicolet iS10 FT-IR spectrometer.

XPS Spectra measurements.

XPS spectra were measured using ESCALAB XI+ from thermo company and simulated in XPSPEAK41.

⁵⁷Fe Mössbauer spectra measurement

Zero-field ⁵⁷Fe Mössbauer spectra were recorded on a WSS-10 spectrometer with a proportional counter. The temperature of the sample was controlled by Model 22C digital temperature controller from Janis Research Company. The Doppler velocity of the spectrometer was calibrated with respect to α -Fe.

Magnetic Studies

Magnetic measurements of samples were performed on a Quantum Design PPMS-9. Measurements were performed using finely ground microcrystalline powders restrained by the parafilm with polycarbonate capsules. Data were corrected for the diamagnetic contribution calculated from Pascal constants and background from the parafilm and capsules.

References

S1 R. Lescouëzec, J. Vaissermann, F. Lloret, M. Julve and M. Verdaguer, Ferromagnetic Coupling

between Low- and High-Spin Iron(III) Ions in the Tetranuclear Complex fac-{ $[Fe^{III}{HB(pz)_3}(CN)_2(\mu-CN)]_3Fe^{III}(H_2O)_3$ }·6H₂O ([HB(pz)_3]- = Hydrotris(1-pyrazolyl)borate), *Inorg. Chem.*, 2002, **41**, 5943-5945.

	1-Fe	2-Ni	3-Mn
CCDC	2068740	2068741	2068760
Formula	$C_{360}H_{354}B_{24}Fe_{42}$	$C_{360}H_{350}B_{24}Fe_{24}$	$C_{360}H_{353}B_{24}Fe_{32}$
	$N_{228}O_{54}$	$Ni_{18}N_{228}O_{50}$	$Mn_{10}N_{228}O_{52}$
Fw	11343.12	11326.36	11301.04
Crystal system	Cubic	Cubic	Cubic
Space group	$Pn\overline{3}n$	$Pn^{3}n$	$Pn^{3}n$
<i>a (</i> Å)	30.7285(8)	30.7270(3)	30.9319(9)
<i>b</i> (Å)	30.7285(8)	30.7270(3)	30.9319(9)
<i>c</i> (Å)	30.7285(8)	30.7270(3)	30.9319(9)
α (°)	90	90	90
eta (°)	90	90	90
γ (°)	90	90	90
$V(Å^3)$	29015(2)	29010.9(8)	29595(3)
Ζ	2	2	2
D_{calc} (g/cm ³)	1.292	1.291	1.260
F(000)	11400.0	11408.0	11308.0
Reflections collected	89025	75511	141076
Unique reflections (R_{int})	0.0682	0.0856	0.0720
Goodness–of–fit on F^2	1.019	1.025	1.055
$R_1 [I > 2\sigma(I)]^a$	0.0622	0.0553	0.0569
$wR_2 [I \ge 2\sigma(I)]^b$	0.1700	0.1684	0.1626

Table S1. Crystal Data and Structure Refinements for compounds 1-3 at 150 K.

 $R_{I} = \Sigma (|F_{0}| - |F_{C}|) / \Sigma |F_{0}|; wR_{2} = [\Sigma w (|F_{0}| - |F_{C}|)^{2} / \Sigma w F_{0}^{2}]^{1/2}.$

Compound 1 ^{150K}			
Bond length (Å)			
Fe1–O1	2.029(4)	Fe2–N7 ⁴	2.022(3)
Fe1-N8 ¹	2.072(2)	Fe2–N7 ⁵	2.022(3)
Fe1-N8 ²	2.072(2)	Fe2–N7	2.022(3)
Fe1-N9	2.044(3)	Fe3–N2	1.999(2)
Fe1-N9 ³	2.044(3)	Fe3–N4	2.000(2)
Fe1-N10	2.197(3)	Fe3–N6	2.013(3)
Fe2–O2	2.124(9)	Fe3-C10	1.853(3)
Fe2–O3	2.098(7)	Fe3-C11	1.886(3)
Fe2–N7	2.022(3)	Fe3-C12	1.880(3)
Bond angle (°)			
O1–Fe1–N8 ¹	92.29(7)	N7-Fe2-O3	88.51(11)
O1–Fe1–N8 ²	92.29(7)	N74-Fe2-N71	89.961(6)
O1–Fe1–N9 ³	90.31(8)	N7 ¹ -Fe2-N7 ⁵	177.0(2)
O1–Fe1–N9	90.30(8)	N7 ⁴ -Fe2-N7 ⁵	89.961(6)
O1-Fe1-N10	180.00(3)	N7-Fe2-N74	177.0(2)
N8 ¹ -Fe1-N8 ²	175.43(15)	N7-Fe2-N7 ¹	89.960(6)
N8 ² -Fe1-N10	87.71(7)	N7–Fe2–N7 ⁵	89.962(6)
N8 ¹ -Fe1-N10	87.71(7)	N2-Fe3-N4	87.40(10)
N9–Fe1–N8 ¹	89.79(10)	N2-Fe3-N6	87.67(10)
N9–Fe1–N8 ²	90.18(10)	N4-Fe3-N6	86.63(10)
N9 ³ -Fe1-N8 ¹	90.18(10)	C10-Fe3-N2	93.89(12)
N9 ³ -Fe1-N8 ²	89.79(10)	C10-Fe3-N4	173.88(12)
N9 ³ -Fe1-N9	179.39(16)	C10-Fe3-N6	87.44(12)
N9 ³ -Fe1-N10	89.69(8)	C10-Fe3-C11	88.53(13)
N9-Fe1-N10	89.70(8)	C10-Fe3-C12	90.73(13)
O3–Fe2–O2	180.0	C11-Fe3-N2	89.41(11)
N7 ¹ -Fe2-O2	91.49(11)	C11-Fe3-N4	97.47(11)
N74–Fe2–O2	91.49(11)	C11-Fe3-N6	174.85(12)
N7 ⁵ -Fe2-O2	91.49(11)	C12-Fe3-N2	175.21(11)
N7–Fe2–O2	91.49(11)	C12-Fe3-N4	87.87(11)
N7 ⁵ -Fe2-O3	88.51(11)	C12-Fe3-N6	91.28(12)
N74–Fe2–O3	88.51(11)	C12-Fe3-C11	91.97(13)
N7 ¹ -Fe2-O3	88.51(11)		

 Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for compound 1.

¹+X,+Z,3/2-Y;²1/2-Z,1/2-X,+Y;³1/2-Y,1/2-X,3/2-Z;⁴+X,3/2-Y,3/2-Z;⁵+X,3/2-Z,+Y;⁶1/2-Y,+Z,1/2-X

Compound 2 ^{150K}			
Bond length (Å)			
Nil-O1	2.064(9)	Ni2–N9	2.044(3)
Ni1–O2	2.090(9)	Ni2–N9 ⁵	2.044(3)
Ni1-N7 ¹	2.024(3)	Ni2-N10	2.200(5)
Ni1-N7 ²	2.024(3)	Fe1–N2	2.001(3)
Ni1-N7 ³	2.024(3)	Fe1–N4	2.001(3)
Ni1–N7	2.024(3)	Fe1–N6	2.016(3)
Ni2-O3	2.018(5)	Fe1-C10	1.852(4)
Ni2-N8 ⁴	2.070(3)	Fe1-C11	1.882(4)
Ni2-N8 ¹	2.070(3)	Fe1–C12	1.866(4)
Bond angle (°)			
O1-Ni1-O2	180.0	N9 ⁵ -Ni2-N8 ⁴	89.63(12)
N7 ¹ -Ni1-O1	91.46(13)	N9 ⁵ –Ni2–N8 ¹	90.33(12)
N7 ² -Ni1-O1	91.46(13)	N9-Ni2-N81	89.62(12)
N7 ³ -Ni1-O1	91.46(13)	N9-Ni2-N84	90.33(12)
N7-Ni1-O1	91.45(13)	N9 ⁵ –Ni2–N9	179.0(2)
N7 ¹ -Ni1-O2	88.54(13)	N9-Ni2-N10	89.48(10)
N7-Ni1-O2	88.55(13)	N9 ⁵ -Ni2-N10	89.48(10)
N7 ² -Ni1-O2	88.54(13)	N2-Fe1-N4	87.44(12)
N7 ³ -Ni1-O2	88.54(13)	N2-Fe1-N6	87.47(13)
N7 ¹ -Ni1-N7 ²	89.963(7)	N4–Fe1–N6	86.81(13)
N7 ³ -Ni1-N7 ²	89.963(7)	C10-Fe1-N2	94.10(15)
N7 ³ -Ni1-N7	89.960(7)	C10-Fe1-N4	174.07(15)
N7 ² -Ni1-N7	177.1(3)	C10-Fe1-N6	87.54(15)
N7 ¹ –Ni1–N7	89.966(7)	C10-Fe1-C11	88.27(16)
N7 ³ -Ni1-N7 ¹	177.1(3)	C10–Fe1–C12	90.67(16)
O3-Ni2-N84	92.62(9)	C11-Fe1-N2	89.58(14)
O3-Ni2-N81	92.62(9)	C11–Fe1–N4	97.47(14)
O3-Ni2-N95	90.52(10)	C11-Fe1-N6	174.69(15)
O3-Ni2-N9	90.52(10)	C12-Fe1-N2	175.04(14)
O3-Ni2-N10	180.00(18)	C12-Fe1-N4	87.68(14)
N81-Ni2-N84	174.75(19)	C12-Fe1-C6	91.37(15)
N8 ¹ -Ni2-N10	87.38(9)	C12-Fe1-C11	91.94(16)
N84-Ni2-N10	87.38(9)		

 Table S3. Selected Bond Lengths (Å) and Bond Angles (°) for compound 2.

¹+X,+Z,1/2-Y;²+X,1/2-Z,+Y;³+X,1/2-Y,1/2-Z;⁴+Y,1/2-Z,1/2-X;⁵1/2-Z,1/2-Y,1/2-X

Compound 3 ^{150K}			
Bond length (Å)			
Fe1–N2	1.995(3)	Mn1–N7	2.118(3)
Fe1–N4	1.991(3)	Mn1–N7 ³	2.118(3)
Fe1–N6	2.004(3)	Mn1–O1	2.118(5)
Fe1–C12	1.867(4)	Mn2–N9 ⁴	2.073(3)
Fe1–C11	1.889(4)	Mn2–N9 ²	2.073(3)
Fe1–C10	1.882(4)	Mn2–N9 ⁵	2.073(3)
Mn1-N10	2.261(4)	Mn2–N9	2.073(3)
Mn1–N8 ¹	2.157(3)	Mn2–O2	2.200(10)
Mn1–N8 ²	2.157(3)	Mn2–O3	2.131(11)
Bond angle (°)			
N2-Fe1-N6	86.74(11)	N7 ³ -Mn1-N8 ²	89.57(11)
N4–Fe1–N2	87.70(11)	N7 ³ –Mn1–N7	179.8(2)
N4–Fe1–N6	88.12(12)	N7–Mn1–O1	89.88(9)
C12–Fe1–N2	174.52(14)	N7 ³ –Mn1–O1	89.88(9)
C12-Fe1-N4	93.83(14)	O1-Mn1-N10	180.0(3)
C12-Fe1-N6	88.05(14)	O1-Mn1-N8 ¹	92.25(9)
C12-Fe1-C11	88.49(15)	O1-Mn1-N8 ²	92.25(9)
C12-Fe1-C10	89.75(15)	N9 ¹ -Mn2-N9 ⁴	174.8(3)
C11-Fe1-N2	96.78(13)	N9 ⁵ –Mn2–N9	174.8(3)
C11-Fe1-N4	90.11(13)	N9 ¹ -Mn2-N9 ⁵	89.883(12)
C11-Fe1-N6	175.99(13)	N9 ⁴ -Mn2-N9	89.884(12)
C10–Fe1–N2	88.71(13)	N9 ¹ –Mn2–N9	89.881(12)
C10-Fe1-N4	176.41(13)	N94-Mn2-N95	89.883(12)
C10-Fe1-N6	91.73(14)	N9-Mn2-O2	87.41(13)
C10-Fe1-C11	90.26(15)	N94-Mn2-O2	87.41(13)
N8 ¹ -Mn1-N10	87.75(9)	N9 ¹ -Mn2-O2	87.41(13)
N8 ² -Mn1-N10	87.75(9)	N9 ⁵ –Mn2–O2	87.41(13)
N8 ¹ -Mn1-N8 ²	175.50(17)	N9-Mn2-O3	92.59(13)
N7 ³ –Mn1–N10	90.12(9)	N9 ⁵ –Mn2–O3	92.59(13)
N7-Mn1-N10	90.12(9)	N9 ¹ -Mn2-O3	92.59(13)
N7-Mn1-N8 ²	90.44(11)	N94-Mn2-O3	92.59(13)
N7 ³ -Mn1-N8 ¹	90.44(11)	O3–Mn2–O2	180.0
N7-Mn1-N81	89.57(11)		

Table S4. Selected Bond Lengths (A) and Bond Angles (°) for compound 3.
-----------------------------------	----------------------	--------------------

¹+Z,+Y,1/2-X;²1/2-Z,+X,1/2-Y;³1/2-X,1/2-Z,1/2-Y;⁴1/2-Z,+Y,+X;⁵1/2-X,+Y,1/2-Z;⁶+Y, 1/2-Z,1/2-X

	Squares (Å)	Rectangles (Å)	Regular triangles (Å)
1-Fe	6.775	6.775*7.306	7.306
2-Ni	6.778	6.778*7.304	7.304
3-Mn	6.847	6.847*7.392	7.392

Table S5. The Fe…Fe edge lengths for the squares, rectangles, and regular triangles for 1-3.

	δ	ΔE_Q	Content	Calcd.	Assignments
	mm s ⁻¹	mm s ⁻¹	%	%	
1-Fe	0.05	0.49	56.07	57.14	^{Tp} Fe ^{II} LS
$[{}^{Tp}Fe^{II}{}_{LS}]_{24}[Fe^{III}{}_{HS}]_{18}$	0.45	0.87	43.93	42.86	Fe ^{III} _{HS}
2-Ni	0.17	0.47	40.26	41.67	^{Tp} Fe ^{II} LS
$[{}^{Tp}Fe^{III}{}_{LS}]_{14}[{}^{Tp}Fe^{II}{}_{LS}]_{10}[Ni^{II}]_{18}$	0.03	1.05	59.74	58.33	^{Tp} Fe ^{III} LS
3-Mn	0.04	0.49	52.59	53.13	^{Tp} Fe ^{II} LS
$[^{Tp}Fe^{III}_{LS}]_7[^{Tp}Fe^{II}_{LS}]_{17}[Fe^{III}_{HS}]_8[Mn^{II}]_{10}$	-0.06	1.07	22.58	21.88	^{Tp} Fe ^{III} LS
	0.43	0.90	24.83	25.00	Fe ^{III} _{HS}

Table S6. Mössbauer parameters for compounds 1-3 at 80 K.

	Element	Concentration (mg/L)	Concentration (mmol/L)	Elemental ratio
1-Fe	Fe	35.02	0.63	1.00
2 NI:	Fe	29.84	0.53	0.57
2-Ni	Ni	23.34	0.40	0.43
2 M	Fe	34.20	0.61	0.75
3-Mn	Mn	11.30	0.20	0.25

 Table S7. ICP-AES experiments results for compounds 1-3.

<i>1</i> ,			0
	1-Fe	2-Ni	3-Mn
$\chi_{\rm m}$ <i>T</i> -experimental (cm ³ mol ⁻¹ K)	75.82	31.84	80.40
$\chi_{\rm m} T$ -calculated (cm ³ mol ⁻¹ K)	78.75	32.68	83.19
Curie constant (cm ³ mol ⁻¹ K)	74.76	30.84	79.30
Weiss temperature (K)	3.24	4.22	3.28

Table S8. The $\chi_m T$ value at 300 K and Curie-Weiss fitting value of 1-3.

Se une Bround spin se			
	1-Fe	2-Ni	3-Mn
S (ground spin state)	90/2	50/2	97/2
ΔS_{max} -experimental (J kg ⁻¹ K ⁻¹)	17.48	9.46	19.84
ΔS_{max} -calculated (J kg ⁻¹ K ⁻¹)	23.64	14.51	27.30

Table S9. The ground spin state, ΔS_{max} -experimental and ΔS_{max} -calculated for 1-3.

 $\Delta S_{\text{max}} - \text{calculated} = \Sigma \text{Rln}(2\text{s}+1); \text{ R} = 8.314*10^3 / \text{ M J kg}^{-1} \text{ K}^{-1} \text{ (M represents formula weight)}$

Compounds	ΔS_{\max}	ΔH	T _{max}
	$(J kg^{-1} K^{-1})$	(T)	(K)
$[Mn^{III}_{8}Mn^{IV}_{4}O_{12}(OAc)_{16}(H_{2}O)_{4}]\cdot 2HOAc\cdot 4H_{2}O^{[49]}$	frequency-	3	1.8
	dependent MCE		
$[Mn^{III}_8Mn^{IV}_4O_{12}(2\text{-}ClPhCO_2)_{16}(H_2O)_4]$	4.3	3	2.5
$CH_2Cl_2 \cdot 5H_2O^{[50]}$			
$[Fe^{III}_{8}(\mu 3-O)_{2}(\mu 2-OH)_{12}(tacn)_{6}]Br_{8}\cdot 9H_{2}O^{[51]}$	frequency-	3	1.7
	dependent and		
	anisotropic MCE		
$[Fe^{III}_{14}O_6(bta)_6(OMe)_{18}Cl_6]^{[52]}$	17.6	7	6.0
$[Fe^{III}_{14}O_6(ta)_6(OMe)_{18}Cl_6]^{[53]}$	20.3	7	6.0
$[Mn^{III}_{6}Mn^{II}_{4}O_{4}Br_{4}(amp)_{6}(H_{2}amp)_{3}(H_{3}amp)]$	13.0	7	2.2
$Br_{38}(C_6H_{14})^{[54]}$			
$[Mn^{III}_{6}Mn^{II}_{4}(OH)_{6}I_{4}(amp)_{4}(Hamp)_{4}(EtOH)_{4}]$	17.0	7	5.2
$I_4 \cdot 12 (EtOH)^{[55]}$			
$[Mn^{III}_{6}Mn^{II}_{8}(OH)_{2}I_{4}(Hpeol)_{4}(H_{2}peol)_{6}(EtOH)_{6}]I_{4}^{[56]}$	25.0	7	3.8
$[Mn^{II}(bpy)_3]_{1.5}[Mn^{IV}_8Mn^{II}_{24}(thme)_{16}(bpy)_{24}$	18.2	7	1.6
$(N_3)_{12}(OAc)_{12}](ClO_4)_{11}^{[56]}$			
$[Mn^{III}_{6}Mn^{II}_{4}(\mu_{3}\text{-}O)_{4}(Hmpt)_{6}(\mu_{3}\text{-}N_{3})_{3}(\mu_{3}\text{-}Br)(Br)]$	10.3	9	2.6
$(N_3)_{0.7/}(Br)_{0.33}MeCN \cdot 2MeOH^{[57]}$			
$[Mn^{\rm III}{}_{11}Mn^{\rm II}{}_6(\mu_4\text{-}O)_8(\mu_3\text{-}Cl)_4(\mu,\mu_3\text{-}OAc)_2(\mu,\mu\text{-}$	13.3	9	5.2
dmp) ₁₀ Cl _{2.34} (OAC) _{0.66} (py) ₃ (MeCN) ₂]·7MeCN ^[58]			
$[Mn^{III}{}_{12}Mn^{II}{}_{7}(\mu_4\text{-}O)_8(Hhmmp){}_{12}(\mu_3\text{-}\eta^1N_3)_8$	8.9	7	4.2
$(MeCN)_6]Cl_2 \cdot MeCN \cdot 10MeOH^{[58]}$			
$[Mn^{III}{}_{12}Mn^{II}{}_{7}O_8(Hhmph)_{12}(N_3)_3(MeO)_{5.5}$	9.0	7	7.0
$(MeOH)_{3.5}(H_2O)_{1.5}(OH)_{0.5}](OAc)\cdot 10H_2O^{[58]}$			
$[Na_{2}Mn^{III}{}_{11}Mn^{II}{}_{4}O_{8}(Hhmph)_{10}(OAc)_{2}(H_{2}O)_{2}$	9.5	7	6.0
$(MeO)_{1.5}(N_3)_{2.5}](OAc) \cdot 10H_2O \cdot 2MeOH^{[59]}$			
$Mn^{II}_{4}(N_3)_{7.3}Cl_{0.7}(dafo)_4^{[59]}$	19.34	5	4.0
$[Fe^{III}_{17}O_{16}(OH)_{12}(py)_{12}Br_4]Br_3^{[60]}$	8.9	7	2.7
$[Mn^{\rm III}{}_{36}Mn^{\rm II}{}_{13}(\mu_4\text{-}{\rm O})_{32}(\mu_3\text{-}{\rm OCH}_3)_8(\mu_3\text{-}hp)_{24}~({\rm O}_2{\rm CH})_6$	6.4	7	10
$(DMF)_{12}](OH)_8^{[61]}$			
$[Mn^{III}_{20}Mn^{II}_{5}Na_{4}(\mu_{4}\text{-}O)_{16}(\mu_{3}\text{-}OCH_{3})_{4}(\mu_{3}\text{-}hp)_{16}$	7.7	7	8
$(O_2CCH_3)_4(O_2CH)(DMF)_8] \cdot (O_2CH)^{[61]}$			

Table S10. Summary of ΔS_{max} data based on ΔH at given temperature for discrete 3d-metal clusters.

Fig. S1. Thermo-gravimetric analysis curve for compounds 1-3 in the Nitrogen atmosphere with the sweeping rate of 10 K min⁻¹. The weight lost were all attribute to H_2O molecules that better accord with the molecular formula of each compounds.

Fig. S2. X-ray powder diffraction data for compounds 1-3 at room temperature.

Fig. S3. (a) The asymmetric unit and crystal packing for cyanide-bridged framework of **1-Fe**. (b) The asymmetric unit and crystal packing for cyanide-bridged framework of **2-Ni**. (c) The asymmetric unit and crystal packing for cyanide-bridged framework of **3-Mn**. Color code: Fe from $[Fe(NC)_4(H_2O)_2]$ and $[Fe(NC)_4(L)(H_2O)]$, green; Ni from $[Ni(NC)_4(H_2O)_2]$ and $[Ni(NC)_4(L)(H_2O)]$, cyan; Mn from $[Mn(NC)_4(H_2O)_2]$ and $[Mn(NC)_4(L)(H_2O)]$, purple; Fe from $[Fe(Tp)(CN)_3]$, pink; N, blue; C, gray; B, yellow; O, red. Hydrogen atoms and solvents are omitted for clarity.

Fig. S4. A frame structure of a single $\{Fe_{24}M_{18}\}$ nanocage and the skeleton structure with metal ions bridged by cyanide groups for **1-Fe** (a), **2-Ni** (b) and **3-Mn** (c).

Fig. S5. Construction of the pseudo-rhombicuboctahedron through cut of the cubic (a), first cut all the edges of cubic (b) and then cut all angles of cubic (c).

Fig. S6. Peak area ratio of different type of Fe species obtained from Mössbauer spectra.

Fig. S7. (a) XPS spectra of Ni 2p for compound **2**, the binding energy around 856.1 eV and 873.6 eV can be attributed to Ni^{II}. (b) XPS spectra of Mn 2p for compound **3**, the binding energy around 641.8 eV and 653.5 eV can be attributed to Mn^{II}.

Fig. S8. Field-dependent of magnetic susceptibility for compounds **1-3** at 1.8 K. Inset: Field-dependent of magnetic susceptibility loop for compounds **1-3** at 1.8 K.

Fig. S9. Plot of magnetization (M/N_{β}) vs HT⁻¹ in the range of 2-10 K for compounds 1-3.