Supporting Information

Steering visible-light-driven photocatalytic activity by forming LaTaON₂-BaTaO₂N solid solutions for water oxidation into

oxygen

Yuwei Zhang a and Xiaoxiang Xua,*

^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Clinical and Central Lab, Putuo People's Hospital, Tongji University, Shanghai, China Address here. Email: xxxu@tongji.edu.cn, telephone: +86-21-65986919

Corresponding author

Xiaoxiang Xu (Email: xxxu@tongji.edu.cn; Tel: +86-021-65986919)

Supporting information content

Number of pages: 19 (S1-S19)

Number of figures: 11 (Figure S1 to S11)

Number of tables: 7 (Table S1 to S7)

Content

Figure:

Figure S1. Spectra of Xenon lamp coupled with a cut-off filter (
$$\lambda \ge 420 \text{ nm}$$
).S4Figure S2. SEM-EDX mapping of sample La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} ($x = 0.8$).S5Figure S3. SEM-EDX element analysis of sample La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} ($x = 0.8$).S6Figure S4. Transmission electron microscopy (TEM) and high-resolution transmission electronmicroscopy (HRTEM) images of (a, d) LaTaON₂ ($x = 0.0$), (b, e) La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} ($x = 0.8$)and (c, f) BaTaO₂N ($x = 1.0$).S7

Figure S5. X-ray photoelectron spectra of sample $La_{1-x}Ba_xTaO_{y+1}N_{2-y}$ ($0 \le x, y \le 1$): (a) La 3*d* state; (b) Ba 3*d* state.

Figure S6. Nitrogen adsorption-desorption isotherms of freshly prepared sample powder La₁. _xBa_xTaO_{y+1}N_{2-y} ($0 \le x, y \le 1$), the calculated BET surface area and FWHM of XRD are tabulated on table S2. S9

Figure S7. photocatalytic oxygen evolution for $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) loaded with 2 wt% CoO_x under visible light illumination ($\lambda \ge 420$ nm), sodium persulfate (0.05 M) or silver nitrate aqueous solution (0.05 M) was used as a sacrificial agent.

Figure S8. XRD pattern of La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} (x = 0.8) before and after oxidation treatment.

S11

Figure S9. Observed and calculated XRD pattern of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) after photocatalytic experiment ($R_p = 4.05\%$, $R_{wp} = 3.10\%$, $\chi^2 = 1.085$). S12 **Figure S10**. X-ray photoelectron spectra of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) before and after photocatalytic experiment. S13

Figure S11. (a) Linear sweep voltammetry (LSV) and (b) impedance spectra for photoelectrode fabricated from samples LaTaON₂ (x = 0.0), La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} (x = 0.8) and BaTaO₂N (x = 1.0).

Tables:

Table S1. BET surface area and FWHM of samples $La_{1-x}Ba_xTaO_{y+1}N_{2-y}$ ($0 \le x, y \le 1$) S15

 Table S2. Element content from oxygen and nitrogen analysis and the calculated chemical

 formula
 S15

Table S3. XPS data on the peak fitting analysis for Ta 4f		
Table S4. Peak positions on XPS analysis for La, Ba, Ta, O and N	S17	

Table S5. Unit parameters for $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) after photocatalytic experiment,standard deviation is included in the parenthesis.S17

Table S6. O_2 evolution of some typical oxynitride and non-oxynitride photocatalysts under visiblelight illumination ($\lambda \ge 420$ nm)S18

Table S7. Photocurrent densities (1.23 V vs. RHE) of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) comparedwith other compounds under visible light illumination ($\lambda \ge 420$ nm)S18

Figure S1. Spectra of Xenon lamp coupled with a cut-off filter ($\lambda \ge 420$ nm).

Figure S2. SEM-EDX mapping of sample $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8).

Figure S3. SEM-EDX element analysis of sample $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8).

Figure S4. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of (a, d) LaTaON₂ (x = 0.0), (b, e) La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} (x = 0.8) and (c, f) BaTaO₂N (x = 1.0).

Figure S5. X-ray photoelectron spectra of sample $La_{1-x}Ba_xTaO_{y+1}N_{2-y}$ ($0 \le x, y \le 1$): (a) La 3*d* state; (b) Ba 3*d* state.

Figure S6. Nitrogen adsorption-desorption isotherms of freshly prepared sample powder La₁. _xBa_xTaO_{y+1}N_{2-y} ($0 \le x, y \le 1$), the calculated BET surface area and FWHM of XRD are tabulated on table S2.

Figure S7. Photocatalytic oxygen evolution for $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) loaded with 2 wt% CoO_x under visible light illumination ($\lambda \ge 420$ nm), sodium persulfate (0.05 M) or silver nitrate aqueous solution (0.05 M) was used as a sacrificial agent.

Figure S8. XRD pattern of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) before and after oxidation treatment.

Figure S9. Observed and calculated XRD pattern of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) after photocatalytic experiment ($R_p = 4.05\%$, $R_{wp} = 3.10\%$, $\chi^2 = 1.085$).

Figure S10. X-ray photoelectron spectra of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) before and after photocatalytic experiment.

Figure S11. (a) Linear sweep voltammetry (LSV) and (b) impedance spectra for photoelectrode fabricated from samples LaTaON₂ (x = 0.0), La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y} (x = 0.8) and BaTaO₂N (x = 1.0).

x	BET surface area (m^2/g)	FWHM of main peak (°)
0.0	22.1	1.2
0.2	17.8	1.1
0.4	12.0	1.1
0.6	8.9	0.9
0.8	9.3	0.5
1.0	1.8	0.2

Table S1. BET surface area and FWHM of samples $La_{1-x}Ba_xTaO_{y+1}N_{2-y}$ ($0 \le x, y \le 1$).

Table S2. Element content from oxygen and nitrogen analysis and the deduced chemical formula

Х	O content (wt.%)	N content (wt.%)	Chemical formula
0.8	9.1	7.2	$La_{0.2}Ba_{0.8}TaO_{1.67}N_{1.33}$

X	Element state	FWHM (eV)	Position (eV)	Area	Position (eV)	Area
0.0	Ta ⁴⁺	1.25	26.07	26894.76	24.17	35859.68
	Ta ⁵⁺	1.86	27.25	30463.74	25.35	40618.32
0.2	Ta ⁴⁺	1.32	26.12	24346.02	24.22	32461.36
	Ta ⁵⁺	1.60	27.44	27272.83	25.54	36363.77
0.4	Ta ⁴⁺	1.33	26.10	11946.99	24.20	15929.32
	Ta ⁵⁺	1.86	27.29	22989.45	25.39	30652.60
0.6	Ta ⁴⁺	1.35	26.17	19934.93	24.27	26579.91
	Ta ⁵⁺	1.65	27.38	30959.82	25.48	41279.77
0.8	Ta ⁴⁺	1.21	26.15	8734.036	24.25	11645.38
	Ta ⁵⁺	1.87	27.31	21443.53	25.41	28591.37
1.0	Ta ⁴⁺	1.21	26.32	6102.065	24.42	8136.086
	Ta ⁵⁺	1.85	27.40	18954.80	25.50	25273.07

Table S3. XPS data on the peak fitting analysis for Ta 4f

Element state	Peak position (eV)	Element state	Peak position (eV)
La ³⁺	836.5 (3 <i>d</i> _{5/2})	Ta ⁴⁺	24.3 (4 <i>f</i> _{7/2})
La ³⁺	839.8 (3 <i>d</i> _{5/2})	Ta ⁴⁺	26.2 (4 <i>f</i> _{5/2})
La ³⁺	853.0 (3 <i>d</i> _{3/2})	Ta ⁵⁺	25.4 (4 <i>f</i> _{7/2})
La ³⁺	856.9 (3 <i>d</i> _{3/2})	Ta ⁵⁺	27.3 (4 <i>f</i> _{5/2})
Ba ²⁺	796.7 (3 <i>d</i> _{3/2})	OH-	531.6 (2 <i>p</i>)
Ba ²⁺	781.3 (3 <i>d</i> _{5/2})	O ²⁻	529.7 (2 <i>p</i>)
N ³⁻	395.6 (1 <i>s</i>)		

Table S4. Peak positions on XPS analysis for La, Ba, Ta, O and N

Table S5. Unit parameters for $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) after photocatalytic experiment,

standard deviation is included in the parenthesis.

x	Space group	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β(°)	B.L. (Å)	$A\left(^{\circ} ight)$	$V(Å^3)$
0.8	РтЗт	4.1035(1	4.1035(1)	4.1035(1)	90	2.0518(1)	180	69.099(2)

Photocatalyst	Co-catalyst	$O_2 (\mu mol h^{-1})$	Ref.
LaTaON ₂	-	5.0	1
SrTaO ₂ N	2 wt\% CoO_x	22.5	2
CaTaO ₂ N	-	2.9	3
BaNbO ₂ N	2 wt% CoO _x	15.3	4
RbPb ₂ Nb ₃ O ₁₀	-	1.3	5
WO ₃	PtO _x	24.0	6
BiVO ₄	-	15.0	7

Table S6. O₂ evolution of some typical oxynitride and non-oxynitride photocatalysts under visible light illumination ($\lambda \ge 420$ nm)

Table S7. Photocurrent densities (1.23 V vs. RHE) of $La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$ (x = 0.8) compared

Photocatalyst	photocurrent density (µA)	Ref.
$La_{0.2}Ba_{0.8}TaO_{y+1}N_{2-y}$	10.4	Our work
LaTaON ₂	2.3	8
CaTaO ₂ N	9.2	9
CuWO ₄	~200	10
SrTaO ₂ N	8.6	11

with other compounds under visible light illumination ($\lambda \ge 420 \text{ nm}$)

Reference

1 L. Zhang, Y. Song, J. Feng, T. Fang, Y. Zhong, Z. Li, Z. Zou, Photoelectrochemical water oxidation of LaTaON₂ under visible-light irradiation, International Journal of Hydrogen Energy, 2014, 39, 7697-7704.

2 J. Fu, S.E. Skrabalak, Enhanced Photoactivity from Single-Crystalline SrTaO₂N Nanoplates Synthesized by Topotactic Nitridation, Angewandte Chemie-International Edition, 2017, 56, 14169-14173.

3 J. Xu, C. Pan, T. Takata, K. Domen, Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO₂N under visible light irradiation, Chemical Communications, 2015, 51, 7191-7194.

4 B. Siritanaratkul, K. Maeda, T. Hisatomi, K. Domen, Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands, ChemSusChem, 2011, 4, 74-78.

5 J. Yoshimura, Y. Ebina, J. Kondo, K. Domen, A. Tanaka, Visible-light induced photocatalytic behavior of a layered perovskite type niobate RbPb₂Nb₃O₁₀, Journal of Physical Chemistry, 1993, 97, 1970-1973.

6 O. Tomita, S. Nitta, Y. Matsuta, S. Hosokawa, M. Higashi, R. Abe, Improved Photocatalytic Water Oxidation with Fe³⁺/Fe²⁺ Redox on Rectangular-shaped WO₃ Particles with Specifically Exposed Crystal Faces via Hydrothermal Synthesis, Chemistry Letters, 2016, 46, 221-224.

7 W. Yao, J. Ye, A new efficient visible-light-driven photocatalyst $Na_{0.5}Bi_{1.5}VMoO_8$ for oxygen evolution, Chemical Physics Letters, 2008,450, 370-374.

8 Y. Wang, S. Jin, G. Pan, Z. Li, L. Chen, G. Liu, X. Xu, Zr doped mesoporous LaTaON₂ for efficient photocatalytic water splitting, Journal of Materials Chemistry A, 2019, 7, 5702-5711.

9 Y. Wang, S. Wei, X. Xu, SrTaO₂N-CaTaO₂N solid solutions as efficient visible light active photocatalysts for water oxidation and reduction, Applied Catalysis B-Environmental, 2020,263.

10 P. Shadabipour, A.L. Raithel, T.W. Hamann, Charge-Carrier Dynamics at the CuWO₄/Electrocatalyst Interface for Photoelectrochemical Water Oxidation, Acs Applied Materials & Interfaces, 2020, 12, 50592-50599.

Z. Ma, K. Pietak, J. Piatek, J. R. DeMoulpied, A. Rokicinska, P. Kustrowski, R. Dronskowski,
 S. Zlotnik, R. H. Coridan and A. Slabon, Semi-transparent quaternary oxynitride photoanodes on
 GaN underlayers, Chemical Communications, 2020, 56, 13193-13196.