[Supporting Information]

Ultrasonic Assisted Exfoliation for Efficient Production of RuO2 Monolayer Nanosheets

Se Yun Kim,^{†a} Sang-il Kim,^{†b} Mun Kyoung Kim,^c Jinhong Kim,^a Soichiro Mizusaki,^a Dong-Su Ko,^d Changhoon Jung,^d Dong-Jin Yun,^d Jong Wook Roh,^e Hyun-Sik Kim,^f Hiesang Sohn,^g Jong-Hyeong Lim,^h Jong-Min Oh,^h Hyung Mo Jeong,^{*c} and Weon Ho Shin^{*h}

^a Inorganic Material Lab, Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea.

^b.Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea.

^cSchool of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea. E-mail: hmjeong@skku.edu

^d Autonomous Material Development Lab, Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea.

^e School of Nano & Materials Science and Engineering, Kyungpook National University, Sangju 37224, Republic of Korea.

^fDepartment of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea.

^g. Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.

^h.Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea. Email: weonho@kw.ac.kr

[†] These authors contributed equally to this work.

S1. The concentration and yield of RuO₂ nanosheets derived from the UV-vis spectroscopy

The equation of the concentration of RuO₂ nanosheets is as below.

$$C = \frac{AM_w}{\alpha l} \tag{eq 1}$$

C, A, M_w , α , and 1 are concentration of the RuO₂ nanosheets, absorbance at 360 nm, molar weight of RuO₂, the molar extinction coefficient of the dispersed RuO₂ monolayers in aqueous solution (7.4 x 10³ mol⁻¹dm³cm⁻¹ at 360 nm)^{s1}, and the length of cuvette, respectively.

The equation of the yield of the RuO_2 nanosheets is as below

$$Y = \frac{AM_wL}{\alpha lm} \tag{eq 2}$$

Y, L, and m are the yield of the RuO_2 nanosheets, an initial volume of aqueous solution, and an initial weight of H_xRuO_2 layered materials, respectively.

References

S1. K. Fukuda, H. Kato, J. Sato, W. Sugimoto, and Y. Takasu, *J. Solid State Chem.*, 2009, 182, 2997.

Figure S1. UV-vis absorption spectra of the RuO₂ nanosheets contained aqueous solution.

S2. SEM images of exfoliated RuO₂ nanosheets

Figure S2. SEM images of exfoliated RuO_2 nanosheets using a) 1 minute and b) 7 minutes of ultrasonication.